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Mobile Values, New Names, and Seure CommuniationMart��n AbadiBell Labs ResearhLuent Tehnologies C�edri FournetMirosoft Researh
AbstratWe study the interation of the \new" onstrut with a rihbut ommon form of (�rst-order) ommuniation. This in-teration is ruial in seurity protools, whih are the mainmotivating examples for our work; it also appears in otherprogramming-language ontexts. Spei�ally, we introduea simple, general extension of the pi alulus with value pass-ing, primitive funtions, and equations among terms. Wedevelop semantis and proof tehniques for this extendedlanguage and apply them in reasoning about some seurityprotools.1 A ase for impurityPurity often omes before onveniene and even beforefaithfulness in the lambda alulus, the pi alulus, andother foundational programming languages. For example,in the standard pi alulus, the only messages are atominames [32℄. This simpliity is extremely appealing from afoundational viewpoint, and helps in developing the theoryof the pi alulus. Furthermore, ingenious enodings demon-strate that it may not entail a loss of generality: in parti-ular, integers, objets, and even higher-order proesses anbe represented in the pure pi alulus.On the other hand, this purity has a prie. In applia-tions, the enodings an be futile, umbersome, and evenmisleading. For example, in the study of programming lan-guages based on the pi alulus (suh as Pit [37℄ or Jo-aml [14℄), there is little point in pretending that integersare not primitive. The enodings may also ompliate statianalysis and prelude areful thinking about the implemen-tations of ommuniation. Moreover, it is not lear thatsatisfatory enodings an always be found. We may ask,for instane, whether there is a good representation of thespi alulus [5℄ (a alulus with ryptographi operations)in the standard pi alulus; we are not aware of any suhrepresentation that preserves seurity properties without atrusted entral proess.

These diÆulties are often irumvented through on-the-y extensions. The extensions range from quik punts (\forthe next example, let's pretend that we have a datatype ofintegers") to the laborious development of new aluli, suhas the spi alulus and its variants. Generally, the exten-sions bring us loser to a realisti programming language ormodeling language|that is not always a bad thing.Although many of the resulting aluli are ad ho andpoorly understood, others are robust and uniform enoughto have a rih theory and a variety of appliations. Inpartiular, impure extensions of the lambda alulus withfuntion symbols and with equations among terms (\deltarules") have been developed systematially, with onsider-able suess. Similarly, impure versions of CCS and CSPwith value-passing are not always deep but often neat andonvenient [31℄.In this paper, we introdue, study, and use an analo-gous uniform extension of the pi alulus, whih we all theapplied pi alulus (by analogy with \applied lambda alu-lus"). From the pure pi alulus, we inherit onstruts forommuniation and onurreny, and for generating stati-ally soped new names (\new"). We add funtions andequations, muh as is done in the lambda alulus. Messagesmay then onsist not only of atomi names but also of val-ues onstruted from names and funtions. This embeddingof names into the spae of values gives rise to an importantinteration between the \new" onstrut and value-passingommuniation, whih appears in neither the pure pi al-ulus nor value-passing CCS and CSP. Further, we add anauxiliary substitution onstrut, roughly similar to a oat-ing \let"; this onstrut is helpful in programming examplesand espeially in semantis and proofs, and serves to ap-ture the partial knowledge that an environment may haveof some values.The applied pi alulus builds on the pure pi alulus andits substantial theory, but it shifts the fous away from en-odings. In omparison with ad ho approahes, it permitsa general, systemati development of syntax, operational se-mantis, equivalenes, and proof tehniques.Using the alulus, we an write and reason about pro-gramming examples where \new" and value-passing appear.First, we an easily treat standard datatypes (integers, pairs,arrays, et.). We an also model unforgeable apabilitiesas new names, then model the appliation of ertain fun-tions to those apabilities. For instane, we may onstruta pair of apabilities. More deliately, the apabilities maybe pointers to omposite strutures, and then adding an o�-set to a pointer to a pair may yield a pointer to its seond
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omponent (e.g., as in [27℄). Furthermore, we an study avariety of seurity protools. For this purpose, we repre-sent fresh hannels, nones, and keys as new names, andprimitive ryptographi operations as funtions, obtaininga simple but useful programming-language perspetive onseurity protools (muh as in the spi alulus). A distin-guishing harateristi of the present approah is that weneed not raft a speial alulus and develop its proof teh-niques for eah hoie of ryptographi operations. Thus,we an express and analyze fairly sophistiated protoolsthat ombine several ryptographi primitives (enryptions,hashes, signatures, XORs, : : : ). We an also desribe at-taks against the protools that rely on (equational) proper-ties of some of those primitives. In our work to date, seurityprotools are our main soure of examples.The next setion de�nes the applied pi alulus. Se-tion 3 introdues some small, informal examples. Setion 4de�nes semanti onepts, suh as proess equivalene, anddevelops proof tehniques. Setions 5 and 6 treat two largerexamples; they onern a DiÆe-Hellman key exhange andmessage authentiation odes, respetively. (The two ex-amples are independent.) Setion 7 disusses some relatedwork and onludes.2 The applied pi alulusIn this setion we de�ne the applied pi alulus: its syntaxand informal semantis, then its operational semantis (inthe now ustomary hemial style).2.1 Syntax and informal semantisA signature � onsists of a �nite set of funtion symbols,suh as f, enrypt, and pair, eah with an arity. A funtionsymbol with arity 0 is a onstant symbol.Given a signature �, an in�nite set of names, and anin�nite set of variables, the set of terms is de�ned by thegrammar:L;M;N; T; U; V ::= termsa; b; ; : : : ; k; : : : ;m; n; : : : ; s namex; y; z variablef(M1; : : : ;Ml) funtion appliationwhere f ranges over the funtions of � and l mathes thearity of f . Although names, variables, and onstant symbolshave similarities, we �nd it learer to keep them separate.A term is ground when it does not have free variables (butit may ontain names and onstant symbols). We use meta-variables u; v; w to range over both names and variables. Wealso use standard onventional notations for funtion appli-ations. We abbreviate tuples u1; : : : ; ul and M1; : : : ;Ml toeu and fM , respetively.We rely on a sort system for terms. It inludes a setof base types, suh as Integer, Key, or simply a universalbase type Data. In addition, if � is a sort, then Channelh�iis a sort too (intuitively, the sort of those hannels thatonvey messages of sort �). A variable an have any sort. Aname an have any sort or, in a more re�ned version of thesort system, any sort in a distinguished lass of sorts. Wetypially use a, b, and  as hannel names, s and k as namesof some base type (e.g., Data), and m and n as names ofany sort. For simpliity, funtion symbols take argumentsand produe results of the base types only. (This separationof hannels from other values is onvenient but not essential

to our approah.) We omit the unimportant details of thissort system, and leave it mostly impliit in the rest of thepaper. We always assume that terms are well-sorted andthat substitutions preserve sorts.The grammar for proesses is similar to the one in thepi alulus, exept that here messages an ontain terms(rather than only names) and that names need not be justhannel names:P;Q;R ::= proesses (or plain proesses)0 null proessP j Q parallel omposition!P repliation�n:P name restrition (\new")if M = N then P else Q onditionalu(x):P message inputuhNi:P message outputThe null proess 0 does nothing; P j Q is the parallel om-position of P andQ; the repliation !P behaves as an in�nitenumber of opies of P running in parallel. The proess �n:Pmakes a new, private name n then behaves as P . The ondi-tional onstrut if M = N then P else Q is standard, but weshould stress that M = N represents equality, rather thanstrit syntati identity. We abbreviate it if M = N then Pwhen Q is 0. Finally, u(x):P is ready to input from hannelu, then to run P with the atual message replaed for theformal parameter x, while uhNi:P is ready to output N onhannel u, then to run P . In both of these, we may omit Pwhen it is 0.Further, we extend proesses with ative substitutions:A;B;C ::= extended proessesP plain proessA j B parallel omposition�n:A name restrition�x:A variable restritionfM=xg ative substitutionWe write fM=xg for the substitution that replaes the vari-able x with the term M . Considered as a proess, fM=xg islike let x =M in : : : , and is similarly useful. However, un-like a \let" de�nition, fM=xg oats and applies to any proessthat omes into ontat with it. To ontrol this ontat, wemay add a restrition: �x:(fM=xg j P ) orresponds exatly tolet x = M in P . The substitution fM=xg typially appearswhen the term M has been sent to the environment, butthe environment may not have the atomi names that ap-pear in M ; the variable x is just a way to refer to M in thissituation. Although the substitution fM=xg onerns onlyone variable, we an build bigger substitutions by parallelomposition, and may writefM1=x1 ; : : : ;Ml=xlg for fM1=x1g j : : : j fMl=xlgWe write �, fM=xg, ffM=exg for substitutions, x� for the imageof x by �, and T� for the result of applying � to the freevariables of T . We identify the empty substitution and thenull proess 0. We always assume that our substitutionsare yle-free. We also assume that, in an extended proess,there is at most one substitution for eah variable, and thereis exatly one when the variable is restrited.Extending the sort system for terms, we rely on a sortsystem for extended proesses. It enfores thatM andN areof the same sort in the onditional expression, that u has sort



www.manaraa.com

Channelh�i for some � in the input and output expressions,and that x and N have the orresponding sort � in thoseexpressions. Again, we omit the unimportant details of thissort system, but assume that extended proesses are well-sorted.As usual, names and variables have sopes, whih aredelimited by restritions and by inputs. We write fv(A),bv(A), fn(A), and bn(A) for the sets of free and bound vari-ables and free and bound names of A, respetively. Thesesets are indutively de�ned, using the same lauses for pro-esses as in the pure pi alulus, and using:fv(fM=xg) def= fv(M) [ fxgfn(fM=xg) def= fn(M)for ative substitutions. An extended proess is losed whenevery variable is either bound or de�ned by an ative substi-tution. We use the abbreviation �eu for the (possibly empty)series of pairwise-distint binders �u1:�u2: : : : �ul.A frame is an extended proess built up from 0 and ativesubstitutions of the form fM=xg by parallel omposition andrestrition. We let ' and  range over frames. The domaindom(') of a frame ' is the set of the variables that ' exports(those variables x for whih ' ontains a substitution fM=xgnot under a restrition on x). Every extended proess A anbe mapped to a frame '(A) by replaing every plain proessembedded in A with 0. The frame '(A) an be viewed as anapproximation of A that aounts for the stati knowledgeexposed by A to its environment, but not for A's dynamibehavior. The domain dom(A) of A is the domain of '(A).2.2 Operational semantisGiven a signature �, we equip it with an equational theory,that is, with an equivalene relation on terms that is losedunder substitutions of terms for variables. (See for exam-ple [33, hapter 3℄ and its referenes for bakground on uni-versal algebra and algebrai data types from a programming-language perspetive.) We further require that this equa-tional theory be losed under one-to-one renamings, but notneessarily losed under substitutions of arbitrary terms fornames.We write � `M = N when the equationM = N is in thetheory assoiated with �. Here we keep the theory impliit,and we may even abbreviate � `M = N toM = N when �is lear from ontext or unimportant. We write � 6`M = Nfor the negation of � `M = N .An equational theory may be generated from a �nite setof equational axioms, or even from rewrite rules, but thisproperty is not essential for us. We tend to ignore the me-hanis of speifying equational theories.As usual, a ontext is an expression (a proess or ex-tended proess) with a hole. An evaluation ontext is a on-text whose hole is not under a repliation, a onditional, aninput, or an output. A ontext C[ ℄ loses A when C[A℄ islosed.Strutural equivalene � is the smallest equivalene re-lation on extended proesses that is losed by �-onversionon both names and variables, by appliation of evaluationontexts, and suh that:Par-0 A � A j 0Par-A A j (B j C) � (A j B) j CPar-C A j B � B j ARepl !P � P j!P

New-0 �n:0 � 0New-C �u:�v:A � �v:�u:ANew-Par A j �u:B � �u:(A j B)when u 62 fv(A) [ fn(A)Alias �x:fM=xg � 0Subst fM=xg j A � fM=xg j AfM=xgRewrite fM=xg � fN=xg when � `M = NThe rules for parallel omposition and restrition are stan-dard. Alias enables the introdution of an arbitrary ativesubstitution. Subst desribes the appliation of an ativesubstitution to a proess that is in ontat with it. Rewritedeals with equational rewriting. In ombination, Alias andSubst yield AfM=xg � �x:(fM=xg j A) for x =2 fv(M):AfM=xg � AfM=xg j 0 by Par-0� 0 j AfM=xg by Par-C� (�x:fM=xg) j AfM=xg by Alias� �x:(fM=xg j AfM=xg) by New-Par� �x:(fM=xg j A) by SubstUsing strutural equivalene, every losed extended pro-ess A an be rewritten to onsist of a substitution and alosed plain proess with some restrited names:A � �en:ffM=exg j Pwhere fv(P ) = ;, fv(fM) = ;, and feng � fn(fM). In parti-ular, every losed frame ' an be rewritten to onsist of asubstitution with some restrited names:' � �en:ffM=exgwhere fv(fM) = ; and feng � fn(fM). The set fexg is thedomain of '.Internal redution ! is the smallest relation on extendedproesses losed by strutural equivalene and appliation ofevaluation ontexts suh that:Comm ahxi:P j a(x):Q ! P j QThen if M =M then P else Q ! PElse if M = N then P else Q ! Qfor any ground terms M and Nsuh that � 6`M = NCommuniation (Comm) is remarkably simple beausethe message onerned is a variable; this simpliity entailsno loss of generality beause Alias and Subst an introduea variable to stand for a term:ahMi:P j a(x):Q � �x:(fM=xg j ahxi:P j a(x):Q)! �x:(fM=xg j P j Q) by Comm� P j QfM=xg(This derivation assumes that x =2 fv(M)[ fv(P ), whih anbe established by �-onversion as needed.)Comparisons (Then and Else) diretly depend on theunderlying equational theory; using Else sometimes re-quires that ative substitutions in the ontext be applied�rst, to yield ground terms M and N .This use of the equational theory may be reminisent ofinitial algebras. In an initial algebra, the priniple of \noonfusion" ditates that two elements are equal only if this is
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required by the orresponding equational theory. Similarly,if M = N then P else Q redues to P only if this is requiredby the equational theory, and redues to Q otherwise. Initialalgebras also obey the priniple of \no junk", whih saysthat all elements orrespond to terms built exlusively fromfuntion symbols of the signature. In ontrast, a fresh nameneed not equal any suh term in the applied pi alulus.3 Brief examplesThis setion ollets several examples, fousing on signa-tures, equations, and some simple proesses. We start withpairs; this trivial example serves to introdue some nota-tions and issues. We then disuss one-way hash funtions,enryption funtions, digital signatures, and the XOR fun-tion [30, 40℄. Further examples appear in setions 5 and 6.Of ourse, at least some of these funtions appear inmost formalizations of ryptography and seurity protools.In omparison with the spi alulus, the applied pi aluluspermits a more uniform and versatile treatment of thesefuntions, their variants, and their properties. Like the spialulus, however, the applied pi alulus takes advantageof notations, onepts, and tehniques from programminglanguages.Pairs and other data strutures Algebrai datatypes suhas pairs, tuples, arrays, and lists our in many examples.Enoding them in the pure pi alulus is not hard, but nei-ther is representing them as primitive. For instane, thesignature � may ontain the binary funtion symbol pairand the unary funtion symbols fst and snd, with the abbre-viation (M;N) for pair(M;N), and the evident equations:fst((x; y)) = xsnd((x; y)) = y(So the equational theory onsists of these equations, andall obtained by reexivity, symmetry, and transitivity andby substituting terms for variables.) The sort system mayenfore that fst and snd are applied only to pairs. Alterna-tively, we may add a boolean funtion that reognizes pairs.We may also add equations that desribe the behavior offst and snd on other values (e.g., adding a onstant symbolwrong, and equations fst(M) = snd(M) = wrong for all ap-propriate ground termsM). We usually omit suh standardvariants in other examples.Using pairs, we may for instane write the proess:�s:�ah(M; s)i j a(x):if snd(x) = s then bhfst(x)i�One of its omponents sends a pair onsisting of a term Mand a fresh name s on a hannel a. The other reeives amessage on a and, if its seond omponent is s, it forwardsthe �rst omponent on a hannel b. Thus, we may say thats serves as a apability (or password) for the forwarding.However, this apability is not proteted from eavesdropperswhen it travels on a. Any other proess an listen on a andan apply snd, thus learning s. We an represent suh anattaker within the alulus, for example by the followingproess: a(x):ah(N; snd(x))iwhih may reeive (M; s) on a and send (N; s) on a. Com-posing this attaker with the program, we may obtain Ninstead of M on b.

One-way hash funtions In ontrast, we represent a one-way hash funtion as a unary funtion symbol h with noequations. The absene of an inverse for h models the one-wayness of h. The fat that h(M) = h(N) only whenM = Nmodels that h is ollision-free.Modifying our �rst example, we may now write:�s:� ah(M; h(s;M))i ja(x):if h(s; fst(x)) = snd(x) then bhfst(x)i �Here the value M is signed by hashing it with the freshname s. Although (M; h(s;M)) travels on the publi han-nel a, no other proess an extrat s from this, or produe(N; h(s;N)) for some other N using the available funtions.Therefore, we may reason that only the intended term Mwill be forwarded on hannel b.This example is a typial ryptographi appliation ofone-way hash funtions. In light of the pratial impor-tane of those appliations, our treatment of one-way hashfuntions is attratively straightforward. Still, we may ques-tion whether our formal model of these funtions is not toostrong and simplisti in omparison with the properties ofatual implementations based on algorithms suh as MD5and SHA. In setion 6, we onsider a somewhat weaker,subtler model for keyed hash funtions.Symmetri enryption In order to model symmetri ryp-tography (that is, shared-key ryptography), we take binaryfuntion symbols en and de for enryption and deryption,respetively, with the equation:de(en(x; y); y) = xHere x represents the plaintext and y the key. We often usefresh names as keys in examples; for instane, the (useless)proess: �k:ahen(M;k)isends the term M enrypted under a fresh key k.In appliations of enryption, it is frequent to assumethat eah enrypted message omes with suÆient redun-dany so that deryption with the \wrong" key is evident.We ould onsider inorporating this property for exampleby adding the equation de(M;N) = wrong whenever Mand N are two ground terms and M 6= en(L;N) for all L.On the other hand, in modern ryptology, suh redundanyis not usually viewed as part of the enryption funtionproper, but rather an addition. The redundany an be im-plemented with message authentiation odes. Aordingly,we do not build it in.Asymmetri enryption It is only slightly harder to modelasymmetri (publi-key) ryptography, where the keys forenryption and deryption are di�erent. We introdue twonew unary funtion symbols pk and sk for generating publiand seret keys from a seed, and the equation:de(en(x;pk(y)); sk(y)) = xWe may now write the proess:�s:�ahpk(s)i j b(x):hde(x; sk(s))i�The �rst omponent publishes the publi key pk(s) by send-ing it on a. The seond reeives a message on b, uses the
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orresponding seret key sk(s) to derypt it, and forwardsthe resulting plaintext on . As this example indiates, weessentially view � as a generator of unguessable seeds. Insome ases, those seeds may be diretly used as passwordsor keys; in others, some transformations are needed.Some enryption shemes have additional properties. Inpartiular, en and de may be the same funtion. Thisproperty matters in implementations, and sometimes per-mits attaks. Moreover, ertain enryptions and deryp-tions ommute in some shemes. For example, we havede(en(x; y); z) = en(de(x; z); y) if the enryptions andderyptions are performed using RSA with the same modu-lus. The treatment of suh properties is left open in [5℄. Inontrast, it is easy to express the properties in the applied pialulus, and to study the protools and attaks that dependon them.Non-deterministi (\probabilisti") enryption Going fur-ther, we may add a third argument to en, so that the en-ryption of a plaintext with a key is not unique. This non-determinism is an essential property of probabilisti enryp-tion systems [23℄. The equation for deryption beomes:de(en(x;pk(y); z); sk(y)) = xWith this variant, we may write the proess:a(x):��m:bhen(M;x;m)i j �n:hen(N; x; n)i�whih reeives a message x and uses it as an enryption keyfor two messages, en(M;x;m) and en(N; x; n). An ob-server who does not have the orresponding deryption keyannot tell whether the underlying plaintexts M and N areidential by omparing the iphertexts, beause the ipher-texts rely on di�erent fresh names m and n. Moreover, evenif the observer learns x, M , and N (but not the deryptionkey), it annot verify that the messages ontain M and Nbeause it does not know m and n.Publi-key digital signatures Like publi-key enryptionshemes, digital-signature shemes rely on pairs of publiand seret keys. In eah pair, the seret key serves foromputing signatures and the publi key for verifying thosesignatures. In order to model digital signatures and theirheking, we use again the two unary funtion symbols pkand sk for generating publi and seret keys from a seed. Wealso use the new binary funtion symbol sign, the ternaryfuntion symbol hek, and the onstant symbol ok, withthe equation:hek(x; sign(x; sk(y));pk(y)) = ok(Several variants are possible.)Modifying again our �rst example, we may now write:��s:fpk(s)=yg j ah(M; sign(M; sk(s)))i� ja(x):if hek(fst(x); snd(x); y) = ok then bhfst(x)iHere the value M is signed using the seret key sk(s). Al-though M and its signature travel on the publi hannel a,no other proess an produe N and its signature for someother N . Therefore, again, we may reason that only the in-tended term M will be forwarded on hannel b. This prop-erty holds despite the publiation of pk(s) (but not sk(s)),whih is represented by the ative substitution that maps yto pk(s). Despite the restrition on s, proesses outside therestrition an use pk(s) through y. In partiular, y refersto pk(s) in the proess that heks the signature on M .

XOR Finally, we may model the XOR funtion, some ofits uses in ryptography, and some of the protool aws on-neted with it. Some of these aws stem from the intrinsiequational properties of XOR, suh as anellation propertythat we may write:xor(xor(x; y); y) = xOthers arise beause of the interations between XOR andother operations (e.g., [41, 15℄). For example, CRCs (yliredundany odes) an be poor proofs of integrity, partlybeause of the equation:r(xor(x; y)) = xor(r(x); r(y))4 Equivalenes and proof tehniquesIn examples, we frequently argue that two given proessesannot be distinguished by any ontext, that is, that theproesses are observationally equivalent. The spi alulusdeveloped the idea that the ontext represents an ative at-taker, and equivalenes apture authentiity and sereyproperties in the presene of the attaker.In this setion we de�ne observational equivalene forthe applied pi alulus. We also introdue a notion of statiequivalene for frames, a labeled semantis for proesses,and a labeled equivalene relation. We prove that labeledequivalene and observational equivalene oinide, obtain-ing a onvenient proof tehnique for observational equiva-lene.4.1 Observational equivaleneWe write A + a when A an send a message on a, thatis, when A!� C[ahMi:P ℄ for some evaluation ontext C[ ℄that does not bind a.De�nition 1 Observational equivalene (�) is the largestsymmetri relation R between losed extended proesses withthe same domain suh that A R B implies:1. if A + a, then B + a;2. if A!� A0, then B !� B0 and A0 R B0 for some B0;3. C[A℄ R C[B℄ for all losing evaluation ontexts C[ ℄.These de�nitions are standard in the pi alulus, where+ a is alled a barb on a, and where � is one of the twousual notions of barbed bisimulation ongruene. (See [20℄for details.)For example, when h is a unary funtion symbol with noequations, we obtain that �s:ahsi � �s:ahh(s)i.4.2 Stati equivaleneTwo substitutions may be seen as equivalent when they be-have equivalently when applied to terms. We write �s forthis notion of equivalene, and all it stati equivalene. Inthe presene of the \new" onstrut, de�ning �s is some-what deliate and interesting. For instane, onsider twofuntions f and g with no equations (intuitively, two inde-pendent one-way hash funtions), and the three frames:'0 def= �k:fk=xg j �s:fs=yg'1 def= �k:ff(k)=x;g(k)=yg'2 def= �k:fk=x;f(k)=yg
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�k:ahen(M;k)i:ahki:a(z):if z =M then h oops ! i �x:ahxi�����! �k:�fen(M;k)=xg j ahki:a(z):if z =M then h oops ! i��y:ahyi�����! �k:�fen(M;k)=xg j fk=yg j a(z):if z =M then h oops ! i�a(de(x;y))�������! �k:�fen(M;k)=xg j fk=yg j if de(x; y) =M then h oops ! i�! �k:�fen(M;k)=xg j fk=yg� j h oops ! iFigure 1: Example transitionsIn '0, the variables x and y are mapped to two unrelatedvalues that are di�erent from any value that the ontextmay build (sine k and s are new). These properties alsohold, but more subtly, for '1; although f(k) and g(k) arebased on the same underlying fresh name, they look unre-lated. (Analogously, it is ommon to onstrut apparentlyunrelated keys by hashing from a single underlying seret,as in SSL [21℄.) Hene, a ontext that obtains the valuesfor x and y annot distinguish '0 and '1. On the otherhand, the ontext an disriminate '2 by testing the pred-iate f(x) = y. Therefore, we would like to de�ne statiequivalene so that '0 �s '1 6�s '2.This example relies on a onept of equality of terms ina frame, whih the following de�nition aptures.De�nition 2 We say that two terms M and N are equal inthe frame ', and write (M = N)', if and only if ' � �en:�,M� = N�, and feng \ (fn(M)[ fn(N)) = ; for some namesen and substitution �.For instane, in our example, we have (f(x) = y)'2 but not(f(x) = y)'1, hene '1 6�s '2.De�nition 3 We say that two losed frames ' and  arestatially equivalent, and write ' �s  , when dom(') =dom( ) and when, for all terms M and N , we have (M =N)' if and only if (M = N) .We say that two losed extended proesses are statiallyequivalent, and write A �s B, when their frames are stati-ally equivalent.Depending on �, stati equivalene an be quite hardto hek, but at least it does not depend on the dynamisof proesses. Some simpli�ations are possible in ommonases, for example when terms an be put in normal forms.The next two lemmas state several basi, importantproperties of �s:Lemma 1 Stati equivalene is losed by strutural equiva-lene, by redution, and by appliation of losing evaluationontexts.Lemma 2 Observational equivalene and stati equivaleneoinide on frames. Observational equivalene is stritly�ner than stati equivalene on extended proesses: � � �s.To see that observational equivalene implies stati equiv-alene, note that if A and B are observationally equivalentthen A j C and B j C have the same barbs for every C, andthat they are statially equivalent when A j C and B j Chave the same barb + a for every C of the speial formif M = N then ahsi, where a does not our in A or B.

4.3 Labeled operational semantis and equivaleneA labeled operational semantis extends the hemial se-mantis of setion 2, enabling us to reason about proessesthat interat with their environment. The labeled semantisde�nes a relation A ��! A0, where � is a label of one of thefollowing forms:� a label a(M), where M is a term that may ontainnames and variables, whih orresponds to an input ofM on a;� a label ahui or �u:ahui, where u is either a hannelname or a variable of base type, whih orresponds toan output of u on a.In addition to the rules for strutural equivalene and re-dution of setion 2, we adopt the following rules:In a(x):P a(M)���! PfM=xgOut-Atom ahui:P ahui���! POpen-Atom A ahui���! A0 u 6= a�u:A �u:ahui�����! A0Sope A ��! A0 u does not our in ��u:A ��! �u:A0Par A ��! A0 bv(�) \ fv(B) = bn(�) \ fn(B) = ;A j B ��! A0 j BStrut A � B B ��! B0 B0 � A0A ��! A0Aording to In, a term M may be input. On the otherhand, Out-Atom permits output only for hannel namesand for variables of base type. Other terms an be outputonly \by referene": a variable an be assoiated with theterm in question and output.For example, using the signature and equations for sym-metri enryption, and the new onstant symbol oops ! , wehave the sequene of transitions of Figure 1. The �rst twotransitions do not diretly reveal the termM . However, theygive enough information to the environment to ompute Mas de(x; y), and to input it in the third transition.The labeled operational semantis leads to an equiva-lene relation:
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De�nition 4 Labeled bisimilarity (�l) is the largest sym-metri relation R on losed extended proesses suh thatA R B implies:1. A �s B;2. if A! A0, then B !� B0 and A0 R B0 for some B0;3. if A ��! A0 and fv(�) � dom(A) and bn(�)\fn(B) = ;,then B !� ��!!� B0 and A0 R B0 for some B0.Conditions 2 and 3 are standard; ondition 1, whih requiresthat bisimilar proesses be statially equivalent, is neessaryfor example in order to distinguish the frames '0 and '2 ofsetion 4.2.Our main result is that this relation oinides with obser-vational equivalene. Although suh results are fairly om-mon in proess aluli, they are important and non-trivial.Theorem 1 Observational equivalene is labeled bisimilar-ity: � = �l.One of the lemmas in the proof of this theorem says that�l is losed by appliation of losing evaluation ontexts.However, unlike the de�nition of �, the de�nition of �l doesnot inlude a ondition about ontexts. It therefore permitssimpler proofs.In addition, labeled bisimilarity an be established viastandard \bisimulation up to ontext" tehniques [38℄, whihenable useful on-the-y simpli�ations in frames after out-put steps. The following lemmas provide methods for sim-plifying frames:Lemma 3 (Alias elimination) Let A and B be losed ex-tended proesses. If fM=xg j A �l fM=xg j B, then A �l B.Lemma 4 (Name dislosure) Let A and B be losed ex-tended proesses. If �s:(fs=xg j A) �l �s:(fs=xg j B), thenA �l B.In Lemma 3, the substitution fM=xg an a�et only the on-text, sine A and B are losed. However, the lemma impliesthat the substitution does not give or mask any informationabout A and B to the ontext. In Lemma 4, the restritionon s and the substitution fs=xg mean that the ontext anaess s only indiretly, through the free variable x. Cru-ially, s is a name of base type. Intuitively, the lemma saysthat indiret aess is equivalent to diret aess in this ase.This labeled operational semantis ontrasts with a morenaive semantis arried over from the pure pi alulus, withoutput labels �eu:ahMi and rules that permit diret outputof any term, suh as:Out-Term ahMi:P ahMi���! POpen-All A �eu:ahMi�����! A0 v 2 fv(M) [ fn(M) n fa; eug�v:A �v;eu:ahMi�������! A0These rules lead to a di�erent, �ner equivalene relation,whih for example would distinguish �k; s:ah(k; s)i and�k:ah(f(k); g(k))i. This equivalene relation is often inad-equate in appliations (as in [5, setion 5.2.1℄), hene ourde�nitions.We have also studied intermediately liberal rules for out-put, whih permit diret output of ertain terms. We ex-plain those rules next.

4.4 Re�ning the labeled operational semantisIn the labeled operational semantis of setion 4.3, the la-bels for outputs do not reveal muh about the terms beingoutput. Exept for hannel names, those terms are repre-sented by variables. Often, however, more expliit labelsan be onvenient in reasoning about protools, and theydo not ause harm as long as they only make expliit in-formation that is immediately available to the environment.For instane, for the proess �k:ah(Header; en(M;k))i, thelabel �y:ah(Header; y)i is more informative than �x:ahxi. Inthis example, the environment ould anyway derive thatfst(x) = Header. More generally, we rely on the followingde�nition to haraterize the information that the environ-ment an derive.De�nition 5 A variable x an be derived from the extendedproess A when, for some term M and extended proess A0,we have A � fM=xg j A0.In general, when x 2 dom(A), there exist en, M , and A0 suhthat A � �en:fM=xg j A0. If x an be derived from A, thenen an be hosen empty, so that M is not under restritions.Intuitively, if x an be derived from A, then A does notreveal more information than �x:A, beause the ontext anbuild the termM and use it instead of x. For example, usingfuntion symbols for pairs and symmetri enryption, we let:' def= �k:fM=x;en(x;k)=y;(y;N)=zgThe variable y an be derived from ' using fst(z). Formally,we have: ' � ffst(z)=yg j �k:fM=x;(en(x;k);N)=zgIn ontrast, x and z annot be derived from ' in general.However, if k does not our in N , then z an be derivedfrom ' using (y;N):' � f(y;N)=zg j �k:fM=x;en(x;k)=ygConversely, if N = k, then x an be derived from ' usingde(y; snd(z)), even if k ours in M :' � fde(y;snd(z))=xg j �k:fen(M;k)=y;(y;k)=zgRelying on De�nition 5, we de�ne rules for output thatpermit omposite terms in labels but require that every re-strited variable that is exported an be derived by the en-vironment. In the relation A ��! A0, the label � now rangesover the same labels a(M) for input and generalized labelsfor output of the form �eu:ahMi, whereM is a term that mayontain variables and where feug � fv(M)[fn(M). The label�eu:ahMi orresponds to an output of M on a that revealsthe names and variables eu.We retain the rules for strutural equivalene and redu-tion, and rules In, Par, and Strut. We also keep ruleSope, but only for labels with no extrusion, that is, forlabels ahMi and a(M). As a replaement for the rules Out-Atom and Open-Atom, we use the rules Out-Term and:Open-Channel A ahbi��! A0 b 6= a�b:A �b:ahbi����! A0Open-Variable A �eu:ahMi�����! A0 x 2 fv(M) n feugx an be derived from �eu:fM=zg j A0�x:A �x;eu:ahMi�������! A0
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Rule Open-Channel is the speial of Open-Atom for han-nel names. Rule Open-Variable �lters output transitionswhose ontents may reveal restrited variables. Only non-derivable subterms have to be replaed with variables beforethe output. Thus, these rules are more liberal than thoseof setion 4.3. In fat, it is easy to hek that the rules ofsetion 4.3 are speial ases of these ones.For instane, onsider A1 = �k:ah(f(k); g(k))i and A2 =�k:ah(k; f(k))i. With the rules of setion 4.3, we have:Ai �z:ahzi����! �x; y:f(x;y)=zg j 'iwhere x; y an be eliminated and 'i is as in setion 4.2.With the new rules, we also have:Ai �x;y:ah(x;y)i��������! 'iThis transition is adequate for A1 sine x and y behave likefresh, independent values. For A2, we also have the moreinformative transition:A2 �x:ah(x;f(x))i���������! �k:fk=xgthat reveals the link between x and y, but not that x is aname.In general, for a given message, we may have severaloutput transitions. Eah of these transitions may lead to aproess with a di�erent frame. However, it suÆes to on-sider any one of the transitions in order to prove that a rela-tion is inluded in labeled bisimilarity. Hene, a partiularlabel an be hosen to reet the struture of the protoolat hand, and to limit the omplexity of the resulting frame.The next theorem states that the two semantis yield thesame notion of equivalene. Thus, making the labels moreexpliit only makes apparent some of the information thatis otherwise kept in the stati, equational part of �l.Theorem 2 Let �L be the relation of labeled bisimilarityobtained by applying De�nition 4 to the semantis of thissetion. We have �l = �L.In another diretion, we an re�ne the semantis to per-mit funtions that take hannels as arguments or produethem as results (whih are exluded in setion 2). For ex-ample, we an permit a pairing funtion for hannels. Thus,although the separation of hannels from other values is fre-quent in examples and onvenient, it is not essential.For this purpose, we would allow the use of the ruleOpen-All in the ase where v is a hannel b. The dis-advantages of this rule (indiated above) do not arise if tworeasonable onstraints are met: (1) hannel sorts ontainonly pairwise-distint names up to term rewriting; (2) forevery term M with a hannel variable x, there is a hannelterm N with free variable y and no free names suh thatx = NfM=yg.5 DiÆe-Hellman key agreement (example)The fundamental DiÆe-Hellman protool allows two prin-ipals to establish a shared seret by exhanging messagesover publi hannels [17℄. The prinipals need not have anyshared serets in advane. The basi protool, on whihwe fous here, does not provide authentiation; therefore,a \bad" prinipal may play the role of either prinipal inthe protool. On the other hand, the two prinipals that

follow the protool will ommuniate seurely with one an-other afterwards, even in the presene of ative attakers.In extended protools, suh as the Station-to-Station pro-tool [18℄ and SKEME [26℄, additional messages performauthentiation.We program the basi protool in terms of the binaryfuntion symbol f and the unary funtion symbol g, withthe equation: f(x; g(y)) = f(y; g(x)) (1)Conretely, the funtions are f(x; y) = yx mod p andg(x) = �x mod p for a prime p and a generator � of Z�p ,and we have the equation f(x; g(y)) = (�y)x = �y�x =�x�y = (�x)y = f(y; g(x)). However, we ignore the under-lying number theory, working abstratly with f and g.The protool has two symmetri partiipants, whih werepresent by the proesses A0 and A1. The protool estab-lishes a shared key, then the partiipants respetively runP0 and P1 using the key. We use the publi hannel 01for messages from A0 to A1 and the publi hannel 10 forommuniation in the opposite diretion. We assume thatnone of the values introdued in the protool appears in P0and P1, exept for the key.In order to establish the key, A0 invents a name n0,sends g(n0) to A1, and A1 proeeds symmetrially. ThenA0 omputes the key as f(n0; g(n1)) and A1 omputes it asf(n1; g(n0)), with the same result. We �nd it onvenient touse the following substitutions for A0's message and key:�0 def= fg(n0)=x0g�0 def= ff(n0;x1)=ygand the orresponding substitutions �1 and �1, as well asthe frame: ' def= (�n0: (�0 j �0)) j (�n1: �1)With these notations, A0 is:A0 def= �n0:(01hx0�0i j 10(x1):P0�0)and A1 is analogous.Two redutions represent a normal run of the protool:A0 j A1 !! �x0; x1; n0; n1: (P0�0 j P1�1 j �0 j �1) (2)� �x0; x1; n0; n1; y: (P0 j P1 j �0 j �0 j �1) (3)� �y:(P0 j P1 j �x0; x1: ') (4)The two ommuniation steps (2) use strutural equivaleneto ativate the substitutions �0 and �1 and extend the sopeof the seret values n0 and n1. The strutural equivalene(3) ruially relies on equation (1) in order to reuse the ativesubstitution �0 instead of �1 after the reeption of x0 in A1.The next strutural equivalene (4) tightens the sope forrestrited names and variables, then uses the de�nition of '.We model an eavesdropper as a proess that intereptsmessages on 01 and 10, remembers them, but forwardsthem unmodi�ed. In the presene of this passive attaker,the operational semantis says that A0 j A1 yields instead:�y:(P0 j P1 j ')The sequene of steps that leads to this result is similar tothe one above. The absene of the restritions on x0 and x1
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orresponds to the fat that the eavesdropper has obtainedthe values of these variables.The following theorem relates this proess to�k:(P0 j P1)fk=ygwhih represents the bodies P0 and P1 of A0 and A1 shar-ing a key k. This key appears as a simple shared name,rather than as the result of ommuniation and omputa-tion. Intuitively, we may read �k:(P0 j P1)fk=yg as the idealoutome of the protool: P0 and P1 exeute using a sharedkey, without onern for how the key was established, andwithout any side-e�ets from weaknesses in the establish-ment of the key. The theorem says that this ideal outomeis essentially ahieved, up to some \noise". This \noise" is asubstitution that maps x0 and x1 to unrelated, fresh names.It aounts for the fat that an attaker may have the key-exhange messages, and that they look just like unrelatedvalues to the attaker. In partiular, the key in use betweenP0 and P1 has no observable relation to those messages, orto any other left-over serets. We view this independene ofthe shared key as an important forward-serey property.Theorem 3 Let P0 and P1 be proesses with free variabley where the name k does not appear. We have:�y:(P0 j P1 j ')� �k:(P0 j P1)fk=yg j �s0:fs0=x0g j �s1:fs1=x1gThe theorem follows from Lemma 2 and the stati equiva-lene ' �s �s0; s1; k:fs0=x0 ;s1=x1 ;k=yg, whih says that theframe ' generated by the protool exeution is equivalentto one that maps variables to fresh names.Extensions of the basi protool add rounds of ommuni-ation that on�rm the key and authentiate the prinipals.We have studied one suh extension with key on�rmation.There, the shared seret f(n0; g(n1)) is used in on�rma-tion messages. Beause of these messages, the shared seretan no longer be equated with a virgin key for P0 and P1.Instead, the �nal key is omputed by hashing the shared se-ret. This hashing guarantees the independene of the �nalkey.6 Message authentiation odes and hashing(another example)Message authentiation odes (MACs) are ommon rypto-graphi operations. In this setion we treat MACs and theironstrutions from one-way hash funtions. This exampleprovides a further illustration of the usefulness of equationsin the applied pi alulus. On the other hand, some aspetsof MAC onstrutions are rather low-level, and we would notexpet to aount for all their ombinatorial details (e.g., the\birthday attaks"). A higher-level task is to express andreason about protools treating MACs as primitive; this issquarely within the sope of our approah.6.1 Using MACsMACs serve to authentiate messages using shared keys.When k is a key and M is a message, and k is known onlyto a ertain prinipal A and to the reipient B of the mes-sage, B may take ma(k;M) as proof thatM omes from A.More preisely, B an hek ma(k;M) by reomputing itupon reeipt of M and ma(k;M), and reason that A must

be the sender of M . This property should hold even if Agenerates MACs for other messages as well; those MACsshould not permit forging a MAC for M . In the worst ase,it should hold even if A generates MACs for other messageson demand.Using a new binary funtion symbol ma, we may de-sribe this senario by the following proesses:A def= !a(x):bh(x;ma(k; x))iB def= b(y):if ma(k; fst(y)) = snd(y) then hfst(y)iS def= �k:(A j B)The proess S represents the omplete system, omposed ofA and B; the restrition on k means that k is private to Aand B. The proess A reeives messages on a publi hannela and returns them MACed on the publi hannel b. WhenB reeives a message on b, it heks its MAC and ats uponit, here simply by forwarding on a hannel . Intuitively,we would expet that B forwards on  only a message thatA has MACed. In other words, although an attaker mayinterept, modify, and injet messages on b, it should not beable to forge a MAC and trik B into forwarding some othermessage.This property an be expressed preisely in terms of thelabeled semantis and it an be heked without too muhdiÆulty when ma is a primitive funtion symbol with noequations. The property remains true even if there is a fun-tion extrat that maps a MAC ma(x; y) to the underlyingleartext y, with the equation extrat(ma(x; y)) = y. SineMACs are not supposed to guarantee serey, suh a fun-tion may well exist, so it is safer to assume that it is availableto the attaker.The property is more deliate if ma is de�ned fromother operations, as it invariably is in pratie. In thatase, the property may even be taken as the spei�ation ofMACs [22℄. Thus, a MAC implementation may be deemedorret if and only if the proess S works as expeted whenma is instantiated with that implementation. More speif-ially, the next setion deals with the question of whetherthe property remains true when ma is de�ned from hashfuntions.6.2 Construting MACsIn setion 3, we give no equations for one-way hash fun-tions. In pratie, one-way hash funtions are ommonlyde�ned by iterating a basi binary ompression funtion,whih maps two input bloks to one output blok. Fur-thermore, keyed one-way hash funtions inlude a key as anadditional argument. Thus, we may have:f(x; y + z) = h(f(x; y); z)where f is the keyed one-way hash funtion, h is the om-pression funtion, x is a key, and y + z represents the on-atenation of blok z to y. Conatenation (+) assoiatesto the left. We also assume other standard operations onsequenes and the orresponding equations.In this equation we are rather abstrat in our treatmentof bloks, their sizes, and therefore of padding and otherrelated issues. We also ignore two ommon twists: somefuntions use initialization vetors to start the iteration, andsome append a length blok to the input. Nevertheless, wean explain various MAC onstrutions, desribing aws insome and reasoning about the properties of others.
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�k:(A j B) a(M)���! �k:(A j B j bh(M;ma(k;M))i)�x:bhxi����! �k:(A j B j f(M;ma(k;M))=xg)b((M+N;h(snd(x);N)))��������������!! �k:(A j hM +Ni j f(M;ma(k;M))=xg)�y:hyi����! �k:(A j f(M;ma(k;M))=x;M+N=yg)Figure 2: An attak senario�k:(A j B) a(M)���! �k:(A j B j bh(M;ma(k;M))i)�x:bh(M;x)i�������! �k:(A j B j fma(k;M)=xg)b((M+N;h(x;N)))�����������!! �k:(A j hM +Ni j fma(k;M)=xg)hM+Ni�����! �k:(A j fma(k;M)=xg)Figure 3: An attak senario (with re�ned labels)A �rst, lassial de�nition of a MAC from a keyed one-way hash funtion f is:ma(x; y) def= f(x; y)For instane, the MAC of a three-blok message M =M0+M1+M2 with key k is ma(k;M) = h(h(f(k;M0);M1);M2).This implementation is subjet to a well-known extensionattak. Given the MAC of M , an attaker an omputethe MAC of any extension M + N without knowing theMAC key, sine ma(k;M + N) = h(ma(k;M); N). Wean desribe the attak formally through the operationalsemantis, as done in Figure 2 and in Figure 3, whih use thesemantis of setions 4.3 and 4.4 respetively. We assumek 62 fn(M) [ fn(N). In those desriptions, we see that themessage M that the system MACs di�ers from the messageM +N that it forwards on .There are several ways to address extension attaks, andindeed the literature ontains many MAC onstrutions thatare not subjet to these attaks. We have onsidered someof them. Here we desribe a onstrution that uses the MACkey twie: ma(x; y) def= f(x; f(x; y))Under this de�nition, the proess S forwards on  only amessage that it has previously MACed, as desired. Lookingbeyond the ase of S, we an prove a more general result byomparing the situation where ma is primitive (and has nospeial equations) and one with the de�nition of ma(x; y) asf(x; f(x; y)). Given a tuple of names ek and an extended pro-ess C that uses the symbol ma, we write [[C℄℄ for the trans-lation of C in whih the de�nition of ma is expanded wher-ever a key ki in ek is used, with f(ki; f(ki;M)) replaed forma(ki;M). The theorem says that this translation yieldsan equivalent proess (so, intuitively, the onstruted MACswork as well as the primitive ones):Theorem 4 Suppose that the names ek appear only as MACkeys in C. Take no equations for ma and the equationf(x; y + z) = h(f(x; y); z) for f. Then �ek:C � �ek:[[C℄℄.

7 Related work and onlusionsIn this paper, we desribe a uniform extension of the pialulus, the applied pi alulus, in whih messages maybe ompound values, not just hannel names. We studyits theory, developing its semantis and proof tehniques.Although the alulus has no speial, built-in features todeal with seurity, we �nd it useful in the analysis of seurityprotools.Other tehniques have been employed for the analysisof these protools. Some are based on omplexity theory;there, prinipals are basially Turing mahines that om-pute on bitstrings, and seurity depends on the omputa-tional limitations of attakers (e.g., [44, 23, 24, 8, 22℄). Oth-ers rely on higher-level, formal representations where issuesof omputational omplexity an be onveniently avoided(e.g., [19, 25, 29, 39, 35, 34, 42, 5, 16, 7℄). Although somereent work [28, 36, 6℄ starts to relate these two shools (forexample, justifying the soundness of the seond with respetto the �rst), they remain rather distint. Our use of the ap-plied pi alulus learly belongs in the seond. Within thisshool, many reent approahes work essentially by reason-ing about all possible traes of a seurity protool. However,the ways of talking about the traes and their propertiesvary greatly. We use a proess alulus. Its semantis pro-vides a detailed spei�ation for sets of traes. Beause theproess alulus has a proper \new" onstrut (like the pialulus but unlike CSP), it provides a diret aount of thegeneration of new keys and other fresh quantities. It alsoenables reasoning with equivalene and implementation re-lations. Furthermore, the proess alulus permits treatingseurity protools as programs written in a programmingnotation|subjet to typing, to other stati analyses, and totranslations [1, 3, 4, 2, 10, 11, 9, 13℄.The applied pi alulus has many ommonalities with theoriginal pi alulus and its relatives, suh as the spi alulus(disussed above). In partiular, the model of ommunia-tion adopted in the applied pi alulus is deliberately las-sial: ommuniation is through named hannels, and valueomputation is rather separate from ommuniation. Fur-
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