
www.manaraa.com

Mobile Values, New Names, and Se
ure Communi
ationMart��n AbadiBell Labs Resear
hLu
ent Te
hnologies C�edri
 FournetMi
rosoft Resear
h
Abstra
tWe study the intera
tion of the \new"
onstru
t with a ri
hbut
ommon form of (�rst-order)
ommuni
ation. This in-tera
tion is
ru
ial in se
urity proto
ols, whi
h are the mainmotivating examples for our work; it also appears in otherprogramming-language
ontexts. Spe
i�
ally, we introdu
ea simple, general extension of the pi
al
ulus with value pass-ing, primitive fun
tions, and equations among terms. Wedevelop semanti
s and proof te
hniques for this extendedlanguage and apply them in reasoning about some se
urityproto
ols.1 A
ase for impurityPurity often
omes before
onvenien
e and even beforefaithfulness in the lambda
al
ulus, the pi
al
ulus, andother foundational programming languages. For example,in the standard pi
al
ulus, the only messages are atomi
names [32℄. This simpli
ity is extremely appealing from afoundational viewpoint, and helps in developing the theoryof the pi
al
ulus. Furthermore, ingenious en
odings demon-strate that it may not entail a loss of generality: in parti
-ular, integers, obje
ts, and even higher-order pro
esses
anbe represented in the pure pi
al
ulus.On the other hand, this purity has a pri
e. In appli
a-tions, the en
odings
an be futile,
umbersome, and evenmisleading. For example, in the study of programming lan-guages based on the pi
al
ulus (su
h as Pi
t [37℄ or Jo-
aml [14℄), there is little point in pretending that integersare not primitive. The en
odings may also
ompli
ate stati
analysis and pre
lude
areful thinking about the implemen-tations of
ommuni
ation. Moreover, it is not
lear thatsatisfa
tory en
odings
an always be found. We may ask,for instan
e, whether there is a good representation of thespi
al
ulus [5℄ (a
al
ulus with
ryptographi
 operations)in the standard pi
al
ulus; we are not aware of any su
hrepresentation that preserves se
urity properties without atrusted
entral pro
ess.

These diÆ
ulties are often
ir
umvented through on-the-
y extensions. The extensions range from qui
k punts (\forthe next example, let's pretend that we have a datatype ofintegers") to the laborious development of new
al
uli, su
has the spi
al
ulus and its variants. Generally, the exten-sions bring us
loser to a realisti
 programming language ormodeling language|that is not always a bad thing.Although many of the resulting
al
uli are ad ho
 andpoorly understood, others are robust and uniform enoughto have a ri
h theory and a variety of appli
ations. Inparti
ular, impure extensions of the lambda
al
ulus withfun
tion symbols and with equations among terms (\deltarules") have been developed systemati
ally, with
onsider-able su

ess. Similarly, impure versions of CCS and CSPwith value-passing are not always deep but often neat and
onvenient [31℄.In this paper, we introdu
e, study, and use an analo-gous uniform extension of the pi
al
ulus, whi
h we
all theapplied pi
al
ulus (by analogy with \applied lambda
al
u-lus"). From the pure pi
al
ulus, we inherit
onstru
ts for
ommuni
ation and
on
urren
y, and for generating stati-
ally s
oped new names (\new"). We add fun
tions andequations, mu
h as is done in the lambda
al
ulus. Messagesmay then
onsist not only of atomi
 names but also of val-ues
onstru
ted from names and fun
tions. This embeddingof names into the spa
e of values gives rise to an importantintera
tion between the \new"
onstru
t and value-passing
ommuni
ation, whi
h appears in neither the pure pi
al-
ulus nor value-passing CCS and CSP. Further, we add anauxiliary substitution
onstru
t, roughly similar to a
oat-ing \let"; this
onstru
t is helpful in programming examplesand espe
ially in semanti
s and proofs, and serves to
ap-ture the partial knowledge that an environment may haveof some values.The applied pi
al
ulus builds on the pure pi
al
ulus andits substantial theory, but it shifts the fo
us away from en-
odings. In
omparison with ad ho
 approa
hes, it permitsa general, systemati
 development of syntax, operational se-manti
s, equivalen
es, and proof te
hniques.Using the
al
ulus, we
an write and reason about pro-gramming examples where \new" and value-passing appear.First, we
an easily treat standard datatypes (integers, pairs,arrays, et
.). We
an also model unforgeable
apabilitiesas new names, then model the appli
ation of
ertain fun
-tions to those
apabilities. For instan
e, we may
onstru
ta pair of
apabilities. More deli
ately, the
apabilities maybe pointers to
omposite stru
tures, and then adding an o�-set to a pointer to a pair may yield a pointer to its se
ond

www.manaraa.com

omponent (e.g., as in [27℄). Furthermore, we
an study avariety of se
urity proto
ols. For this purpose, we repre-sent fresh
hannels, non
es, and keys as new names, andprimitive
ryptographi
 operations as fun
tions, obtaininga simple but useful programming-language perspe
tive onse
urity proto
ols (mu
h as in the spi
al
ulus). A distin-guishing
hara
teristi
 of the present approa
h is that weneed not
raft a spe
ial
al
ulus and develop its proof te
h-niques for ea
h
hoi
e of
ryptographi
 operations. Thus,we
an express and analyze fairly sophisti
ated proto
olsthat
ombine several
ryptographi
 primitives (en
ryptions,hashes, signatures, XORs, : : :). We
an also des
ribe at-ta
ks against the proto
ols that rely on (equational) proper-ties of some of those primitives. In our work to date, se
urityproto
ols are our main sour
e of examples.The next se
tion de�nes the applied pi
al
ulus. Se
-tion 3 introdu
es some small, informal examples. Se
tion 4de�nes semanti

on
epts, su
h as pro
ess equivalen
e, anddevelops proof te
hniques. Se
tions 5 and 6 treat two largerexamples; they
on
ern a DiÆe-Hellman key ex
hange andmessage authenti
ation
odes, respe
tively. (The two ex-amples are independent.) Se
tion 7 dis
usses some relatedwork and
on
ludes.2 The applied pi
al
ulusIn this se
tion we de�ne the applied pi
al
ulus: its syntaxand informal semanti
s, then its operational semanti
s (inthe now
ustomary
hemi
al style).2.1 Syntax and informal semanti
sA signature �
onsists of a �nite set of fun
tion symbols,su
h as f, en
rypt, and pair, ea
h with an arity. A fun
tionsymbol with arity 0 is a
onstant symbol.Given a signature �, an in�nite set of names, and anin�nite set of variables, the set of terms is de�ned by thegrammar:L;M;N; T; U; V ::= termsa; b;
; : : : ; k; : : : ;m; n; : : : ; s namex; y; z variablef(M1; : : : ;Ml) fun
tion appli
ationwhere f ranges over the fun
tions of � and l mat
hes thearity of f . Although names, variables, and
onstant symbolshave similarities, we �nd it
learer to keep them separate.A term is ground when it does not have free variables (butit may
ontain names and
onstant symbols). We use meta-variables u; v; w to range over both names and variables. Wealso use standard
onventional notations for fun
tion appli-
ations. We abbreviate tuples u1; : : : ; ul and M1; : : : ;Ml toeu and fM , respe
tively.We rely on a sort system for terms. It in
ludes a setof base types, su
h as Integer, Key, or simply a universalbase type Data. In addition, if � is a sort, then Channelh�iis a sort too (intuitively, the sort of those
hannels that
onvey messages of sort �). A variable
an have any sort. Aname
an have any sort or, in a more re�ned version of thesort system, any sort in a distinguished
lass of sorts. Wetypi
ally use a, b, and
 as
hannel names, s and k as namesof some base type (e.g., Data), and m and n as names ofany sort. For simpli
ity, fun
tion symbols take argumentsand produ
e results of the base types only. (This separationof
hannels from other values is
onvenient but not essential

to our approa
h.) We omit the unimportant details of thissort system, and leave it mostly impli
it in the rest of thepaper. We always assume that terms are well-sorted andthat substitutions preserve sorts.The grammar for pro
esses is similar to the one in thepi
al
ulus, ex
ept that here messages
an
ontain terms(rather than only names) and that names need not be just
hannel names:P;Q;R ::= pro
esses (or plain pro
esses)0 null pro
essP j Q parallel
omposition!P repli
ation�n:P name restri
tion (\new")if M = N then P else Q
onditionalu(x):P message inputuhNi:P message outputThe null pro
ess 0 does nothing; P j Q is the parallel
om-position of P andQ; the repli
ation !P behaves as an in�nitenumber of
opies of P running in parallel. The pro
ess �n:Pmakes a new, private name n then behaves as P . The
ondi-tional
onstru
t if M = N then P else Q is standard, but weshould stress that M = N represents equality, rather thanstri
t synta
ti
 identity. We abbreviate it if M = N then Pwhen Q is 0. Finally, u(x):P is ready to input from
hannelu, then to run P with the a
tual message repla
ed for theformal parameter x, while uhNi:P is ready to output N on
hannel u, then to run P . In both of these, we may omit Pwhen it is 0.Further, we extend pro
esses with a
tive substitutions:A;B;C ::= extended pro
essesP plain pro
essA j B parallel
omposition�n:A name restri
tion�x:A variable restri
tionfM=xg a
tive substitutionWe write fM=xg for the substitution that repla
es the vari-able x with the term M . Considered as a pro
ess, fM=xg islike let x =M in : : : , and is similarly useful. However, un-like a \let" de�nition, fM=xg
oats and applies to any pro
essthat
omes into
onta
t with it. To
ontrol this
onta
t, wemay add a restri
tion: �x:(fM=xg j P)
orresponds exa
tly tolet x = M in P . The substitution fM=xg typi
ally appearswhen the term M has been sent to the environment, butthe environment may not have the atomi
 names that ap-pear in M ; the variable x is just a way to refer to M in thissituation. Although the substitution fM=xg
on
erns onlyone variable, we
an build bigger substitutions by parallel
omposition, and may writefM1=x1 ; : : : ;Ml=xlg for fM1=x1g j : : : j fMl=xlgWe write �, fM=xg, ffM=exg for substitutions, x� for the imageof x by �, and T� for the result of applying � to the freevariables of T . We identify the empty substitution and thenull pro
ess 0. We always assume that our substitutionsare
y
le-free. We also assume that, in an extended pro
ess,there is at most one substitution for ea
h variable, and thereis exa
tly one when the variable is restri
ted.Extending the sort system for terms, we rely on a sortsystem for extended pro
esses. It enfor
es thatM andN areof the same sort in the
onditional expression, that u has sort

www.manaraa.com

Channelh�i for some � in the input and output expressions,and that x and N have the
orresponding sort � in thoseexpressions. Again, we omit the unimportant details of thissort system, but assume that extended pro
esses are well-sorted.As usual, names and variables have s
opes, whi
h aredelimited by restri
tions and by inputs. We write fv(A),bv(A), fn(A), and bn(A) for the sets of free and bound vari-ables and free and bound names of A, respe
tively. Thesesets are indu
tively de�ned, using the same
lauses for pro-
esses as in the pure pi
al
ulus, and using:fv(fM=xg) def= fv(M) [fxgfn(fM=xg) def= fn(M)for a
tive substitutions. An extended pro
ess is
losed whenevery variable is either bound or de�ned by an a
tive substi-tution. We use the abbreviation �eu for the (possibly empty)series of pairwise-distin
t binders �u1:�u2: : : : �ul.A frame is an extended pro
ess built up from 0 and a
tivesubstitutions of the form fM=xg by parallel
omposition andrestri
tion. We let ' and range over frames. The domaindom(') of a frame ' is the set of the variables that ' exports(those variables x for whi
h '
ontains a substitution fM=xgnot under a restri
tion on x). Every extended pro
ess A
anbe mapped to a frame '(A) by repla
ing every plain pro
essembedded in A with 0. The frame '(A)
an be viewed as anapproximation of A that a

ounts for the stati
 knowledgeexposed by A to its environment, but not for A's dynami
behavior. The domain dom(A) of A is the domain of '(A).2.2 Operational semanti
sGiven a signature �, we equip it with an equational theory,that is, with an equivalen
e relation on terms that is
losedunder substitutions of terms for variables. (See for exam-ple [33,
hapter 3℄ and its referen
es for ba
kground on uni-versal algebra and algebrai
 data types from a programming-language perspe
tive.) We further require that this equa-tional theory be
losed under one-to-one renamings, but notne
essarily
losed under substitutions of arbitrary terms fornames.We write � `M = N when the equationM = N is in thetheory asso
iated with �. Here we keep the theory impli
it,and we may even abbreviate � `M = N toM = N when �is
lear from
ontext or unimportant. We write � 6`M = Nfor the negation of � `M = N .An equational theory may be generated from a �nite setof equational axioms, or even from rewrite rules, but thisproperty is not essential for us. We tend to ignore the me-
hani
s of spe
ifying equational theories.As usual, a
ontext is an expression (a pro
ess or ex-tended pro
ess) with a hole. An evaluation
ontext is a
on-text whose hole is not under a repli
ation, a
onditional, aninput, or an output. A
ontext C[℄
loses A when C[A℄ is
losed.Stru
tural equivalen
e � is the smallest equivalen
e re-lation on extended pro
esses that is
losed by �-
onversionon both names and variables, by appli
ation of evaluation
ontexts, and su
h that:Par-0 A � A j 0Par-A A j (B j C) � (A j B) j CPar-C A j B � B j ARepl !P � P j!P

New-0 �n:0 � 0New-C �u:�v:A � �v:�u:ANew-Par A j �u:B � �u:(A j B)when u 62 fv(A) [fn(A)Alias �x:fM=xg � 0Subst fM=xg j A � fM=xg j AfM=xgRewrite fM=xg � fN=xg when � `M = NThe rules for parallel
omposition and restri
tion are stan-dard. Alias enables the introdu
tion of an arbitrary a
tivesubstitution. Subst des
ribes the appli
ation of an a
tivesubstitution to a pro
ess that is in
onta
t with it. Rewritedeals with equational rewriting. In
ombination, Alias andSubst yield AfM=xg � �x:(fM=xg j A) for x =2 fv(M):AfM=xg � AfM=xg j 0 by Par-0� 0 j AfM=xg by Par-C� (�x:fM=xg) j AfM=xg by Alias� �x:(fM=xg j AfM=xg) by New-Par� �x:(fM=xg j A) by SubstUsing stru
tural equivalen
e, every
losed extended pro
-ess A
an be rewritten to
onsist of a substitution and a
losed plain pro
ess with some restri
ted names:A � �en:ffM=exg j Pwhere fv(P) = ;, fv(fM) = ;, and feng � fn(fM). In parti
-ular, every
losed frame '
an be rewritten to
onsist of asubstitution with some restri
ted names:' � �en:ffM=exgwhere fv(fM) = ; and feng � fn(fM). The set fexg is thedomain of '.Internal redu
tion ! is the smallest relation on extendedpro
esses
losed by stru
tural equivalen
e and appli
ation ofevaluation
ontexts su
h that:Comm ahxi:P j a(x):Q ! P j QThen if M =M then P else Q ! PElse if M = N then P else Q ! Qfor any ground terms M and Nsu
h that � 6`M = NCommuni
ation (Comm) is remarkably simple be
ausethe message
on
erned is a variable; this simpli
ity entailsno loss of generality be
ause Alias and Subst
an introdu
ea variable to stand for a term:ahMi:P j a(x):Q � �x:(fM=xg j ahxi:P j a(x):Q)! �x:(fM=xg j P j Q) by Comm� P j QfM=xg(This derivation assumes that x =2 fv(M)[fv(P), whi
h
anbe established by �-
onversion as needed.)Comparisons (Then and Else) dire
tly depend on theunderlying equational theory; using Else sometimes re-quires that a
tive substitutions in the
ontext be applied�rst, to yield ground terms M and N .This use of the equational theory may be reminis
ent ofinitial algebras. In an initial algebra, the prin
iple of \no
onfusion" di
tates that two elements are equal only if this is

www.manaraa.com

required by the
orresponding equational theory. Similarly,if M = N then P else Q redu
es to P only if this is requiredby the equational theory, and redu
es to Q otherwise. Initialalgebras also obey the prin
iple of \no junk", whi
h saysthat all elements
orrespond to terms built ex
lusively fromfun
tion symbols of the signature. In
ontrast, a fresh nameneed not equal any su
h term in the applied pi
al
ulus.3 Brief examplesThis se
tion
olle
ts several examples, fo
using on signa-tures, equations, and some simple pro
esses. We start withpairs; this trivial example serves to introdu
e some nota-tions and issues. We then dis
uss one-way hash fun
tions,en
ryption fun
tions, digital signatures, and the XOR fun
-tion [30, 40℄. Further examples appear in se
tions 5 and 6.Of
ourse, at least some of these fun
tions appear inmost formalizations of
ryptography and se
urity proto
ols.In
omparison with the spi
al
ulus, the applied pi
al
uluspermits a more uniform and versatile treatment of thesefun
tions, their variants, and their properties. Like the spi
al
ulus, however, the applied pi
al
ulus takes advantageof notations,
on
epts, and te
hniques from programminglanguages.Pairs and other data stru
tures Algebrai
 datatypes su
has pairs, tuples, arrays, and lists o

ur in many examples.En
oding them in the pure pi
al
ulus is not hard, but nei-ther is representing them as primitive. For instan
e, thesignature � may
ontain the binary fun
tion symbol pairand the unary fun
tion symbols fst and snd, with the abbre-viation (M;N) for pair(M;N), and the evident equations:fst((x; y)) = xsnd((x; y)) = y(So the equational theory
onsists of these equations, andall obtained by re
exivity, symmetry, and transitivity andby substituting terms for variables.) The sort system mayenfor
e that fst and snd are applied only to pairs. Alterna-tively, we may add a boolean fun
tion that re
ognizes pairs.We may also add equations that des
ribe the behavior offst and snd on other values (e.g., adding a
onstant symbolwrong, and equations fst(M) = snd(M) = wrong for all ap-propriate ground termsM). We usually omit su
h standardvariants in other examples.Using pairs, we may for instan
e write the pro
ess:�s:�ah(M; s)i j a(x):if snd(x) = s then bhfst(x)i�One of its
omponents sends a pair
onsisting of a term Mand a fresh name s on a
hannel a. The other re
eives amessage on a and, if its se
ond
omponent is s, it forwardsthe �rst
omponent on a
hannel b. Thus, we may say thats serves as a
apability (or password) for the forwarding.However, this
apability is not prote
ted from eavesdropperswhen it travels on a. Any other pro
ess
an listen on a and
an apply snd, thus learning s. We
an represent su
h anatta
ker within the
al
ulus, for example by the followingpro
ess: a(x):ah(N; snd(x))iwhi
h may re
eive (M; s) on a and send (N; s) on a. Com-posing this atta
ker with the program, we may obtain Ninstead of M on b.

One-way hash fun
tions In
ontrast, we represent a one-way hash fun
tion as a unary fun
tion symbol h with noequations. The absen
e of an inverse for h models the one-wayness of h. The fa
t that h(M) = h(N) only whenM = Nmodels that h is
ollision-free.Modifying our �rst example, we may now write:�s:� ah(M; h(s;M))i ja(x):if h(s; fst(x)) = snd(x) then bhfst(x)i �Here the value M is signed by hashing it with the freshname s. Although (M; h(s;M)) travels on the publi

han-nel a, no other pro
ess
an extra
t s from this, or produ
e(N; h(s;N)) for some other N using the available fun
tions.Therefore, we may reason that only the intended term Mwill be forwarded on
hannel b.This example is a typi
al
ryptographi
 appli
ation ofone-way hash fun
tions. In light of the pra
ti
al impor-tan
e of those appli
ations, our treatment of one-way hashfun
tions is attra
tively straightforward. Still, we may ques-tion whether our formal model of these fun
tions is not toostrong and simplisti
 in
omparison with the properties ofa
tual implementations based on algorithms su
h as MD5and SHA. In se
tion 6, we
onsider a somewhat weaker,subtler model for keyed hash fun
tions.Symmetri
 en
ryption In order to model symmetri

ryp-tography (that is, shared-key
ryptography), we take binaryfun
tion symbols en
 and de
 for en
ryption and de
ryption,respe
tively, with the equation:de
(en
(x; y); y) = xHere x represents the plaintext and y the key. We often usefresh names as keys in examples; for instan
e, the (useless)pro
ess: �k:ahen
(M;k)isends the term M en
rypted under a fresh key k.In appli
ations of en
ryption, it is frequent to assumethat ea
h en
rypted message
omes with suÆ
ient redun-dan
y so that de
ryption with the \wrong" key is evident.We
ould
onsider in
orporating this property for exampleby adding the equation de
(M;N) = wrong whenever Mand N are two ground terms and M 6= en
(L;N) for all L.On the other hand, in modern
ryptology, su
h redundan
yis not usually viewed as part of the en
ryption fun
tionproper, but rather an addition. The redundan
y
an be im-plemented with message authenti
ation
odes. A

ordingly,we do not build it in.Asymmetri
 en
ryption It is only slightly harder to modelasymmetri
 (publi
-key)
ryptography, where the keys foren
ryption and de
ryption are di�erent. We introdu
e twonew unary fun
tion symbols pk and sk for generating publi
and se
ret keys from a seed, and the equation:de
(en
(x;pk(y)); sk(y)) = xWe may now write the pro
ess:�s:�ahpk(s)i j b(x):
hde
(x; sk(s))i�The �rst
omponent publishes the publi
 key pk(s) by send-ing it on a. The se
ond re
eives a message on b, uses the

www.manaraa.com

orresponding se
ret key sk(s) to de
rypt it, and forwardsthe resulting plaintext on
. As this example indi
ates, weessentially view � as a generator of unguessable seeds. Insome
ases, those seeds may be dire
tly used as passwordsor keys; in others, some transformations are needed.Some en
ryption s
hemes have additional properties. Inparti
ular, en
 and de
 may be the same fun
tion. Thisproperty matters in implementations, and sometimes per-mits atta
ks. Moreover,
ertain en
ryptions and de
ryp-tions
ommute in some s
hemes. For example, we havede
(en
(x; y); z) = en
(de
(x; z); y) if the en
ryptions andde
ryptions are performed using RSA with the same modu-lus. The treatment of su
h properties is left open in [5℄. In
ontrast, it is easy to express the properties in the applied pi
al
ulus, and to study the proto
ols and atta
ks that dependon them.Non-deterministi
 (\probabilisti
") en
ryption Going fur-ther, we may add a third argument to en
, so that the en-
ryption of a plaintext with a key is not unique. This non-determinism is an essential property of probabilisti
 en
ryp-tion systems [23℄. The equation for de
ryption be
omes:de
(en
(x;pk(y); z); sk(y)) = xWith this variant, we may write the pro
ess:a(x):��m:bhen
(M;x;m)i j �n:
hen
(N; x; n)i�whi
h re
eives a message x and uses it as an en
ryption keyfor two messages, en
(M;x;m) and en
(N; x; n). An ob-server who does not have the
orresponding de
ryption key
annot tell whether the underlying plaintexts M and N areidenti
al by
omparing the
iphertexts, be
ause the
ipher-texts rely on di�erent fresh names m and n. Moreover, evenif the observer learns x, M , and N (but not the de
ryptionkey), it
annot verify that the messages
ontain M and Nbe
ause it does not know m and n.Publi
-key digital signatures Like publi
-key en
ryptions
hemes, digital-signature s
hemes rely on pairs of publi
and se
ret keys. In ea
h pair, the se
ret key serves for
omputing signatures and the publi
 key for verifying thosesignatures. In order to model digital signatures and their
he
king, we use again the two unary fun
tion symbols pkand sk for generating publi
 and se
ret keys from a seed. Wealso use the new binary fun
tion symbol sign, the ternaryfun
tion symbol
he
k, and the
onstant symbol ok, withthe equation:
he
k(x; sign(x; sk(y));pk(y)) = ok(Several variants are possible.)Modifying again our �rst example, we may now write:��s:fpk(s)=yg j ah(M; sign(M; sk(s)))i� ja(x):if
he
k(fst(x); snd(x); y) = ok then bhfst(x)iHere the value M is signed using the se
ret key sk(s). Al-though M and its signature travel on the publi

hannel a,no other pro
ess
an produ
e N and its signature for someother N . Therefore, again, we may reason that only the in-tended term M will be forwarded on
hannel b. This prop-erty holds despite the publi
ation of pk(s) (but not sk(s)),whi
h is represented by the a
tive substitution that maps yto pk(s). Despite the restri
tion on s, pro
esses outside therestri
tion
an use pk(s) through y. In parti
ular, y refersto pk(s) in the pro
ess that
he
ks the signature on M .

XOR Finally, we may model the XOR fun
tion, some ofits uses in
ryptography, and some of the proto
ol
aws
on-ne
ted with it. Some of these
aws stem from the intrinsi
equational properties of XOR, su
h as
an
ellation propertythat we may write:xor(xor(x; y); y) = xOthers arise be
ause of the intera
tions between XOR andother operations (e.g., [41, 15℄). For example, CRCs (
y
li
redundan
y
odes)
an be poor proofs of integrity, partlybe
ause of the equation:
r
(xor(x; y)) = xor(
r
(x);
r
(y))4 Equivalen
es and proof te
hniquesIn examples, we frequently argue that two given pro
esses
annot be distinguished by any
ontext, that is, that thepro
esses are observationally equivalent. The spi
al
ulusdeveloped the idea that the
ontext represents an a
tive at-ta
ker, and equivalen
es
apture authenti
ity and se
re
yproperties in the presen
e of the atta
ker.In this se
tion we de�ne observational equivalen
e forthe applied pi
al
ulus. We also introdu
e a notion of stati
equivalen
e for frames, a labeled semanti
s for pro
esses,and a labeled equivalen
e relation. We prove that labeledequivalen
e and observational equivalen
e
oin
ide, obtain-ing a
onvenient proof te
hnique for observational equiva-len
e.4.1 Observational equivalen
eWe write A + a when A
an send a message on a, thatis, when A!� C[ahMi:P ℄ for some evaluation
ontext C[℄that does not bind a.De�nition 1 Observational equivalen
e (�) is the largestsymmetri
 relation R between
losed extended pro
esses withthe same domain su
h that A R B implies:1. if A + a, then B + a;2. if A!� A0, then B !� B0 and A0 R B0 for some B0;3. C[A℄ R C[B℄ for all
losing evaluation
ontexts C[℄.These de�nitions are standard in the pi
al
ulus, where+ a is
alled a barb on a, and where � is one of the twousual notions of barbed bisimulation
ongruen
e. (See [20℄for details.)For example, when h is a unary fun
tion symbol with noequations, we obtain that �s:ahsi � �s:ahh(s)i.4.2 Stati
 equivalen
eTwo substitutions may be seen as equivalent when they be-have equivalently when applied to terms. We write �s forthis notion of equivalen
e, and
all it stati
 equivalen
e. Inthe presen
e of the \new"
onstru
t, de�ning �s is some-what deli
ate and interesting. For instan
e,
onsider twofun
tions f and g with no equations (intuitively, two inde-pendent one-way hash fun
tions), and the three frames:'0 def= �k:fk=xg j �s:fs=yg'1 def= �k:ff(k)=x;g(k)=yg'2 def= �k:fk=x;f(k)=yg

www.manaraa.com

�k:ahen
(M;k)i:ahki:a(z):if z =M then
h oops ! i �x:ahxi�����! �k:�fen
(M;k)=xg j ahki:a(z):if z =M then
h oops ! i��y:ahyi�����! �k:�fen
(M;k)=xg j fk=yg j a(z):if z =M then
h oops ! i�a(de
(x;y))�������! �k:�fen
(M;k)=xg j fk=yg j if de
(x; y) =M then
h oops ! i�! �k:�fen
(M;k)=xg j fk=yg� j
h oops ! iFigure 1: Example transitionsIn '0, the variables x and y are mapped to two unrelatedvalues that are di�erent from any value that the
ontextmay build (sin
e k and s are new). These properties alsohold, but more subtly, for '1; although f(k) and g(k) arebased on the same underlying fresh name, they look unre-lated. (Analogously, it is
ommon to
onstru
t apparentlyunrelated keys by hashing from a single underlying se
ret,as in SSL [21℄.) Hen
e, a
ontext that obtains the valuesfor x and y
annot distinguish '0 and '1. On the otherhand, the
ontext
an dis
riminate '2 by testing the pred-i
ate f(x) = y. Therefore, we would like to de�ne stati
equivalen
e so that '0 �s '1 6�s '2.This example relies on a
on
ept of equality of terms ina frame, whi
h the following de�nition
aptures.De�nition 2 We say that two terms M and N are equal inthe frame ', and write (M = N)', if and only if ' � �en:�,M� = N�, and feng \ (fn(M)[fn(N)) = ; for some namesen and substitution �.For instan
e, in our example, we have (f(x) = y)'2 but not(f(x) = y)'1, hen
e '1 6�s '2.De�nition 3 We say that two
losed frames ' and arestati
ally equivalent, and write ' �s , when dom(') =dom() and when, for all terms M and N , we have (M =N)' if and only if (M = N) .We say that two
losed extended pro
esses are stati
allyequivalent, and write A �s B, when their frames are stati-
ally equivalent.Depending on �, stati
 equivalen
e
an be quite hardto
he
k, but at least it does not depend on the dynami
sof pro
esses. Some simpli�
ations are possible in
ommon
ases, for example when terms
an be put in normal forms.The next two lemmas state several basi
, importantproperties of �s:Lemma 1 Stati
 equivalen
e is
losed by stru
tural equiva-len
e, by redu
tion, and by appli
ation of
losing evaluation
ontexts.Lemma 2 Observational equivalen
e and stati
 equivalen
e
oin
ide on frames. Observational equivalen
e is stri
tly�ner than stati
 equivalen
e on extended pro
esses: � � �s.To see that observational equivalen
e implies stati
 equiv-alen
e, note that if A and B are observationally equivalentthen A j C and B j C have the same barbs for every C, andthat they are stati
ally equivalent when A j C and B j Chave the same barb + a for every C of the spe
ial formif M = N then ahsi, where a does not o

ur in A or B.

4.3 Labeled operational semanti
s and equivalen
eA labeled operational semanti
s extends the
hemi
al se-manti
s of se
tion 2, enabling us to reason about pro
essesthat intera
t with their environment. The labeled semanti
sde�nes a relation A ��! A0, where � is a label of one of thefollowing forms:� a label a(M), where M is a term that may
ontainnames and variables, whi
h
orresponds to an input ofM on a;� a label ahui or �u:ahui, where u is either a
hannelname or a variable of base type, whi
h
orresponds toan output of u on a.In addition to the rules for stru
tural equivalen
e and re-du
tion of se
tion 2, we adopt the following rules:In a(x):P a(M)���! PfM=xgOut-Atom ahui:P ahui���! POpen-Atom A ahui���! A0 u 6= a�u:A �u:ahui�����! A0S
ope A ��! A0 u does not o

ur in ��u:A ��! �u:A0Par A ��! A0 bv(�) \ fv(B) = bn(�) \ fn(B) = ;A j B ��! A0 j BStru
t A � B B ��! B0 B0 � A0A ��! A0A

ording to In, a term M may be input. On the otherhand, Out-Atom permits output only for
hannel namesand for variables of base type. Other terms
an be outputonly \by referen
e": a variable
an be asso
iated with theterm in question and output.For example, using the signature and equations for sym-metri
 en
ryption, and the new
onstant symbol oops ! , wehave the sequen
e of transitions of Figure 1. The �rst twotransitions do not dire
tly reveal the termM . However, theygive enough information to the environment to
ompute Mas de
(x; y), and to input it in the third transition.The labeled operational semanti
s leads to an equiva-len
e relation:

www.manaraa.com

De�nition 4 Labeled bisimilarity (�l) is the largest sym-metri
 relation R on
losed extended pro
esses su
h thatA R B implies:1. A �s B;2. if A! A0, then B !� B0 and A0 R B0 for some B0;3. if A ��! A0 and fv(�) � dom(A) and bn(�)\fn(B) = ;,then B !� ��!!� B0 and A0 R B0 for some B0.Conditions 2 and 3 are standard;
ondition 1, whi
h requiresthat bisimilar pro
esses be stati
ally equivalent, is ne
essaryfor example in order to distinguish the frames '0 and '2 ofse
tion 4.2.Our main result is that this relation
oin
ides with obser-vational equivalen
e. Although su
h results are fairly
om-mon in pro
ess
al
uli, they are important and non-trivial.Theorem 1 Observational equivalen
e is labeled bisimilar-ity: � = �l.One of the lemmas in the proof of this theorem says that�l is
losed by appli
ation of
losing evaluation
ontexts.However, unlike the de�nition of �, the de�nition of �l doesnot in
lude a
ondition about
ontexts. It therefore permitssimpler proofs.In addition, labeled bisimilarity
an be established viastandard \bisimulation up to
ontext" te
hniques [38℄, whi
henable useful on-the-
y simpli�
ations in frames after out-put steps. The following lemmas provide methods for sim-plifying frames:Lemma 3 (Alias elimination) Let A and B be
losed ex-tended pro
esses. If fM=xg j A �l fM=xg j B, then A �l B.Lemma 4 (Name dis
losure) Let A and B be
losed ex-tended pro
esses. If �s:(fs=xg j A) �l �s:(fs=xg j B), thenA �l B.In Lemma 3, the substitution fM=xg
an a�e
t only the
on-text, sin
e A and B are
losed. However, the lemma impliesthat the substitution does not give or mask any informationabout A and B to the
ontext. In Lemma 4, the restri
tionon s and the substitution fs=xg mean that the
ontext
ana

ess s only indire
tly, through the free variable x. Cru-
ially, s is a name of base type. Intuitively, the lemma saysthat indire
t a

ess is equivalent to dire
t a

ess in this
ase.This labeled operational semanti
s
ontrasts with a morenaive semanti
s
arried over from the pure pi
al
ulus, withoutput labels �eu:ahMi and rules that permit dire
t outputof any term, su
h as:Out-Term ahMi:P ahMi���! POpen-All A �eu:ahMi�����! A0 v 2 fv(M) [fn(M) n fa; eug�v:A �v;eu:ahMi�������! A0These rules lead to a di�erent, �ner equivalen
e relation,whi
h for example would distinguish �k; s:ah(k; s)i and�k:ah(f(k); g(k))i. This equivalen
e relation is often inad-equate in appli
ations (as in [5, se
tion 5.2.1℄), hen
e ourde�nitions.We have also studied intermediately liberal rules for out-put, whi
h permit dire
t output of
ertain terms. We ex-plain those rules next.

4.4 Re�ning the labeled operational semanti
sIn the labeled operational semanti
s of se
tion 4.3, the la-bels for outputs do not reveal mu
h about the terms beingoutput. Ex
ept for
hannel names, those terms are repre-sented by variables. Often, however, more expli
it labels
an be
onvenient in reasoning about proto
ols, and theydo not
ause harm as long as they only make expli
it in-formation that is immediately available to the environment.For instan
e, for the pro
ess �k:ah(Header; en
(M;k))i, thelabel �y:ah(Header; y)i is more informative than �x:ahxi. Inthis example, the environment
ould anyway derive thatfst(x) = Header. More generally, we rely on the followingde�nition to
hara
terize the information that the environ-ment
an derive.De�nition 5 A variable x
an be derived from the extendedpro
ess A when, for some term M and extended pro
ess A0,we have A � fM=xg j A0.In general, when x 2 dom(A), there exist en, M , and A0 su
hthat A � �en:fM=xg j A0. If x
an be derived from A, thenen
an be
hosen empty, so that M is not under restri
tions.Intuitively, if x
an be derived from A, then A does notreveal more information than �x:A, be
ause the
ontext
anbuild the termM and use it instead of x. For example, usingfun
tion symbols for pairs and symmetri
 en
ryption, we let:' def= �k:fM=x;en
(x;k)=y;(y;N)=zgThe variable y
an be derived from ' using fst(z). Formally,we have: ' � ffst(z)=yg j �k:fM=x;(en
(x;k);N)=zgIn
ontrast, x and z
annot be derived from ' in general.However, if k does not o

ur in N , then z
an be derivedfrom ' using (y;N):' � f(y;N)=zg j �k:fM=x;en
(x;k)=ygConversely, if N = k, then x
an be derived from ' usingde
(y; snd(z)), even if k o

urs in M :' � fde
(y;snd(z))=xg j �k:fen
(M;k)=y;(y;k)=zgRelying on De�nition 5, we de�ne rules for output thatpermit
omposite terms in labels but require that every re-stri
ted variable that is exported
an be derived by the en-vironment. In the relation A ��! A0, the label � now rangesover the same labels a(M) for input and generalized labelsfor output of the form �eu:ahMi, whereM is a term that may
ontain variables and where feug � fv(M)[fn(M). The label�eu:ahMi
orresponds to an output of M on a that revealsthe names and variables eu.We retain the rules for stru
tural equivalen
e and redu
-tion, and rules In, Par, and Stru
t. We also keep ruleS
ope, but only for labels with no extrusion, that is, forlabels ahMi and a(M). As a repla
ement for the rules Out-Atom and Open-Atom, we use the rules Out-Term and:Open-Channel A ahbi��! A0 b 6= a�b:A �b:ahbi����! A0Open-Variable A �eu:ahMi�����! A0 x 2 fv(M) n feugx
an be derived from �eu:fM=zg j A0�x:A �x;eu:ahMi�������! A0

www.manaraa.com

Rule Open-Channel is the spe
ial of Open-Atom for
han-nel names. Rule Open-Variable �lters output transitionswhose
ontents may reveal restri
ted variables. Only non-derivable subterms have to be repla
ed with variables beforethe output. Thus, these rules are more liberal than thoseof se
tion 4.3. In fa
t, it is easy to
he
k that the rules ofse
tion 4.3 are spe
ial
ases of these ones.For instan
e,
onsider A1 = �k:ah(f(k); g(k))i and A2 =�k:ah(k; f(k))i. With the rules of se
tion 4.3, we have:Ai �z:ahzi����! �x; y:f(x;y)=zg j 'iwhere x; y
an be eliminated and 'i is as in se
tion 4.2.With the new rules, we also have:Ai �x;y:ah(x;y)i��������! 'iThis transition is adequate for A1 sin
e x and y behave likefresh, independent values. For A2, we also have the moreinformative transition:A2 �x:ah(x;f(x))i���������! �k:fk=xgthat reveals the link between x and y, but not that x is aname.In general, for a given message, we may have severaloutput transitions. Ea
h of these transitions may lead to apro
ess with a di�erent frame. However, it suÆ
es to
on-sider any one of the transitions in order to prove that a rela-tion is in
luded in labeled bisimilarity. Hen
e, a parti
ularlabel
an be
hosen to re
e
t the stru
ture of the proto
olat hand, and to limit the
omplexity of the resulting frame.The next theorem states that the two semanti
s yield thesame notion of equivalen
e. Thus, making the labels moreexpli
it only makes apparent some of the information thatis otherwise kept in the stati
, equational part of �l.Theorem 2 Let �L be the relation of labeled bisimilarityobtained by applying De�nition 4 to the semanti
s of thisse
tion. We have �l = �L.In another dire
tion, we
an re�ne the semanti
s to per-mit fun
tions that take
hannels as arguments or produ
ethem as results (whi
h are ex
luded in se
tion 2). For ex-ample, we
an permit a pairing fun
tion for
hannels. Thus,although the separation of
hannels from other values is fre-quent in examples and
onvenient, it is not essential.For this purpose, we would allow the use of the ruleOpen-All in the
ase where v is a
hannel b. The dis-advantages of this rule (indi
ated above) do not arise if tworeasonable
onstraints are met: (1)
hannel sorts
ontainonly pairwise-distin
t names up to term rewriting; (2) forevery term M with a
hannel variable x, there is a
hannelterm N with free variable y and no free names su
h thatx = NfM=yg.5 DiÆe-Hellman key agreement (example)The fundamental DiÆe-Hellman proto
ol allows two prin-
ipals to establish a shared se
ret by ex
hanging messagesover publi

hannels [17℄. The prin
ipals need not have anyshared se
rets in advan
e. The basi
 proto
ol, on whi
hwe fo
us here, does not provide authenti
ation; therefore,a \bad" prin
ipal may play the role of either prin
ipal inthe proto
ol. On the other hand, the two prin
ipals that

follow the proto
ol will
ommuni
ate se
urely with one an-other afterwards, even in the presen
e of a
tive atta
kers.In extended proto
ols, su
h as the Station-to-Station pro-to
ol [18℄ and SKEME [26℄, additional messages performauthenti
ation.We program the basi
 proto
ol in terms of the binaryfun
tion symbol f and the unary fun
tion symbol g, withthe equation: f(x; g(y)) = f(y; g(x)) (1)Con
retely, the fun
tions are f(x; y) = yx mod p andg(x) = �x mod p for a prime p and a generator � of Z�p ,and we have the equation f(x; g(y)) = (�y)x = �y�x =�x�y = (�x)y = f(y; g(x)). However, we ignore the under-lying number theory, working abstra
tly with f and g.The proto
ol has two symmetri
 parti
ipants, whi
h werepresent by the pro
esses A0 and A1. The proto
ol estab-lishes a shared key, then the parti
ipants respe
tively runP0 and P1 using the key. We use the publi

hannel
01for messages from A0 to A1 and the publi

hannel
10 for
ommuni
ation in the opposite dire
tion. We assume thatnone of the values introdu
ed in the proto
ol appears in P0and P1, ex
ept for the key.In order to establish the key, A0 invents a name n0,sends g(n0) to A1, and A1 pro
eeds symmetri
ally. ThenA0
omputes the key as f(n0; g(n1)) and A1
omputes it asf(n1; g(n0)), with the same result. We �nd it
onvenient touse the following substitutions for A0's message and key:�0 def= fg(n0)=x0g�0 def= ff(n0;x1)=ygand the
orresponding substitutions �1 and �1, as well asthe frame: ' def= (�n0: (�0 j �0)) j (�n1: �1)With these notations, A0 is:A0 def= �n0:(
01hx0�0i j
10(x1):P0�0)and A1 is analogous.Two redu
tions represent a normal run of the proto
ol:A0 j A1 !! �x0; x1; n0; n1: (P0�0 j P1�1 j �0 j �1) (2)� �x0; x1; n0; n1; y: (P0 j P1 j �0 j �0 j �1) (3)� �y:(P0 j P1 j �x0; x1: ') (4)The two
ommuni
ation steps (2) use stru
tural equivalen
eto a
tivate the substitutions �0 and �1 and extend the s
opeof the se
ret values n0 and n1. The stru
tural equivalen
e(3)
ru
ially relies on equation (1) in order to reuse the a
tivesubstitution �0 instead of �1 after the re
eption of x0 in A1.The next stru
tural equivalen
e (4) tightens the s
ope forrestri
ted names and variables, then uses the de�nition of '.We model an eavesdropper as a pro
ess that inter
eptsmessages on
01 and
10, remembers them, but forwardsthem unmodi�ed. In the presen
e of this passive atta
ker,the operational semanti
s says that A0 j A1 yields instead:�y:(P0 j P1 j ')The sequen
e of steps that leads to this result is similar tothe one above. The absen
e of the restri
tions on x0 and x1

www.manaraa.com

orresponds to the fa
t that the eavesdropper has obtainedthe values of these variables.The following theorem relates this pro
ess to�k:(P0 j P1)fk=ygwhi
h represents the bodies P0 and P1 of A0 and A1 shar-ing a key k. This key appears as a simple shared name,rather than as the result of
ommuni
ation and
omputa-tion. Intuitively, we may read �k:(P0 j P1)fk=yg as the idealout
ome of the proto
ol: P0 and P1 exe
ute using a sharedkey, without
on
ern for how the key was established, andwithout any side-e�e
ts from weaknesses in the establish-ment of the key. The theorem says that this ideal out
omeis essentially a
hieved, up to some \noise". This \noise" is asubstitution that maps x0 and x1 to unrelated, fresh names.It a

ounts for the fa
t that an atta
ker may have the key-ex
hange messages, and that they look just like unrelatedvalues to the atta
ker. In parti
ular, the key in use betweenP0 and P1 has no observable relation to those messages, orto any other left-over se
rets. We view this independen
e ofthe shared key as an important forward-se
re
y property.Theorem 3 Let P0 and P1 be pro
esses with free variabley where the name k does not appear. We have:�y:(P0 j P1 j ')� �k:(P0 j P1)fk=yg j �s0:fs0=x0g j �s1:fs1=x1gThe theorem follows from Lemma 2 and the stati
 equiva-len
e ' �s �s0; s1; k:fs0=x0 ;s1=x1 ;k=yg, whi
h says that theframe ' generated by the proto
ol exe
ution is equivalentto one that maps variables to fresh names.Extensions of the basi
 proto
ol add rounds of
ommuni-
ation that
on�rm the key and authenti
ate the prin
ipals.We have studied one su
h extension with key
on�rmation.There, the shared se
ret f(n0; g(n1)) is used in
on�rma-tion messages. Be
ause of these messages, the shared se
ret
an no longer be equated with a virgin key for P0 and P1.Instead, the �nal key is
omputed by hashing the shared se-
ret. This hashing guarantees the independen
e of the �nalkey.6 Message authenti
ation
odes and hashing(another example)Message authenti
ation
odes (MACs) are
ommon
rypto-graphi
 operations. In this se
tion we treat MACs and their
onstru
tions from one-way hash fun
tions. This exampleprovides a further illustration of the usefulness of equationsin the applied pi
al
ulus. On the other hand, some aspe
tsof MAC
onstru
tions are rather low-level, and we would notexpe
t to a

ount for all their
ombinatorial details (e.g., the\birthday atta
ks"). A higher-level task is to express andreason about proto
ols treating MACs as primitive; this issquarely within the s
ope of our approa
h.6.1 Using MACsMACs serve to authenti
ate messages using shared keys.When k is a key and M is a message, and k is known onlyto a
ertain prin
ipal A and to the re
ipient B of the mes-sage, B may take ma
(k;M) as proof thatM
omes from A.More pre
isely, B
an
he
k ma
(k;M) by re
omputing itupon re
eipt of M and ma
(k;M), and reason that A must

be the sender of M . This property should hold even if Agenerates MACs for other messages as well; those MACsshould not permit forging a MAC for M . In the worst
ase,it should hold even if A generates MACs for other messageson demand.Using a new binary fun
tion symbol ma
, we may de-s
ribe this s
enario by the following pro
esses:A def= !a(x):bh(x;ma
(k; x))iB def= b(y):if ma
(k; fst(y)) = snd(y) then
hfst(y)iS def= �k:(A j B)The pro
ess S represents the
omplete system,
omposed ofA and B; the restri
tion on k means that k is private to Aand B. The pro
ess A re
eives messages on a publi

hannela and returns them MACed on the publi

hannel b. WhenB re
eives a message on b, it
he
ks its MAC and a
ts uponit, here simply by forwarding on a
hannel
. Intuitively,we would expe
t that B forwards on
 only a message thatA has MACed. In other words, although an atta
ker mayinter
ept, modify, and inje
t messages on b, it should not beable to forge a MAC and tri
k B into forwarding some othermessage.This property
an be expressed pre
isely in terms of thelabeled semanti
s and it
an be
he
ked without too mu
hdiÆ
ulty when ma
 is a primitive fun
tion symbol with noequations. The property remains true even if there is a fun
-tion extra
t that maps a MAC ma
(x; y) to the underlying
leartext y, with the equation extra
t(ma
(x; y)) = y. Sin
eMACs are not supposed to guarantee se
re
y, su
h a fun
-tion may well exist, so it is safer to assume that it is availableto the atta
ker.The property is more deli
ate if ma
 is de�ned fromother operations, as it invariably is in pra
ti
e. In that
ase, the property may even be taken as the spe
i�
ation ofMACs [22℄. Thus, a MAC implementation may be deemed
orre
t if and only if the pro
ess S works as expe
ted whenma
 is instantiated with that implementation. More spe
if-i
ally, the next se
tion deals with the question of whetherthe property remains true when ma
 is de�ned from hashfun
tions.6.2 Constru
ting MACsIn se
tion 3, we give no equations for one-way hash fun
-tions. In pra
ti
e, one-way hash fun
tions are
ommonlyde�ned by iterating a basi
 binary
ompression fun
tion,whi
h maps two input blo
ks to one output blo
k. Fur-thermore, keyed one-way hash fun
tions in
lude a key as anadditional argument. Thus, we may have:f(x; y + z) = h(f(x; y); z)where f is the keyed one-way hash fun
tion, h is the
om-pression fun
tion, x is a key, and y + z represents the
on-
atenation of blo
k z to y. Con
atenation (+) asso
iatesto the left. We also assume other standard operations onsequen
es and the
orresponding equations.In this equation we are rather abstra
t in our treatmentof blo
ks, their sizes, and therefore of padding and otherrelated issues. We also ignore two
ommon twists: somefun
tions use initialization ve
tors to start the iteration, andsome append a length blo
k to the input. Nevertheless, we
an explain various MAC
onstru
tions, des
ribing
aws insome and reasoning about the properties of others.

www.manaraa.com

�k:(A j B) a(M)���! �k:(A j B j bh(M;ma
(k;M))i)�x:bhxi����! �k:(A j B j f(M;ma
(k;M))=xg)b((M+N;h(snd(x);N)))��������������!! �k:(A j
hM +Ni j f(M;ma
(k;M))=xg)�y:
hyi����! �k:(A j f(M;ma
(k;M))=x;M+N=yg)Figure 2: An atta
k s
enario�k:(A j B) a(M)���! �k:(A j B j bh(M;ma
(k;M))i)�x:bh(M;x)i�������! �k:(A j B j fma
(k;M)=xg)b((M+N;h(x;N)))�����������!! �k:(A j
hM +Ni j fma
(k;M)=xg)
hM+Ni�����! �k:(A j fma
(k;M)=xg)Figure 3: An atta
k s
enario (with re�ned labels)A �rst,
lassi
al de�nition of a MAC from a keyed one-way hash fun
tion f is:ma
(x; y) def= f(x; y)For instan
e, the MAC of a three-blo
k message M =M0+M1+M2 with key k is ma
(k;M) = h(h(f(k;M0);M1);M2).This implementation is subje
t to a well-known extensionatta
k. Given the MAC of M , an atta
ker
an
omputethe MAC of any extension M + N without knowing theMAC key, sin
e ma
(k;M + N) = h(ma
(k;M); N). We
an des
ribe the atta
k formally through the operationalsemanti
s, as done in Figure 2 and in Figure 3, whi
h use thesemanti
s of se
tions 4.3 and 4.4 respe
tively. We assumek 62 fn(M) [fn(N). In those des
riptions, we see that themessage M that the system MACs di�ers from the messageM +N that it forwards on
.There are several ways to address extension atta
ks, andindeed the literature
ontains many MAC
onstru
tions thatare not subje
t to these atta
ks. We have
onsidered someof them. Here we des
ribe a
onstru
tion that uses the MACkey twi
e: ma
(x; y) def= f(x; f(x; y))Under this de�nition, the pro
ess S forwards on
 only amessage that it has previously MACed, as desired. Lookingbeyond the
ase of S, we
an prove a more general result by
omparing the situation where ma
 is primitive (and has nospe
ial equations) and one with the de�nition of ma
(x; y) asf(x; f(x; y)). Given a tuple of names ek and an extended pro
-ess C that uses the symbol ma
, we write [[C℄℄ for the trans-lation of C in whi
h the de�nition of ma
 is expanded wher-ever a key ki in ek is used, with f(ki; f(ki;M)) repla
ed forma
(ki;M). The theorem says that this translation yieldsan equivalent pro
ess (so, intuitively, the
onstru
ted MACswork as well as the primitive ones):Theorem 4 Suppose that the names ek appear only as MACkeys in C. Take no equations for ma
 and the equationf(x; y + z) = h(f(x; y); z) for f. Then �ek:C � �ek:[[C℄℄.

7 Related work and
on
lusionsIn this paper, we des
ribe a uniform extension of the pi
al
ulus, the applied pi
al
ulus, in whi
h messages maybe
ompound values, not just
hannel names. We studyits theory, developing its semanti
s and proof te
hniques.Although the
al
ulus has no spe
ial, built-in features todeal with se
urity, we �nd it useful in the analysis of se
urityproto
ols.Other te
hniques have been employed for the analysisof these proto
ols. Some are based on
omplexity theory;there, prin
ipals are basi
ally Turing ma
hines that
om-pute on bitstrings, and se
urity depends on the
omputa-tional limitations of atta
kers (e.g., [44, 23, 24, 8, 22℄). Oth-ers rely on higher-level, formal representations where issuesof
omputational
omplexity
an be
onveniently avoided(e.g., [19, 25, 29, 39, 35, 34, 42, 5, 16, 7℄). Although somere
ent work [28, 36, 6℄ starts to relate these two s
hools (forexample, justifying the soundness of the se
ond with respe
tto the �rst), they remain rather distin
t. Our use of the ap-plied pi
al
ulus
learly belongs in the se
ond. Within thiss
hool, many re
ent approa
hes work essentially by reason-ing about all possible tra
es of a se
urity proto
ol. However,the ways of talking about the tra
es and their propertiesvary greatly. We use a pro
ess
al
ulus. Its semanti
s pro-vides a detailed spe
i�
ation for sets of tra
es. Be
ause thepro
ess
al
ulus has a proper \new"
onstru
t (like the pi
al
ulus but unlike CSP), it provides a dire
t a

ount of thegeneration of new keys and other fresh quantities. It alsoenables reasoning with equivalen
e and implementation re-lations. Furthermore, the pro
ess
al
ulus permits treatingse
urity proto
ols as programs written in a programmingnotation|subje
t to typing, to other stati
 analyses, and totranslations [1, 3, 4, 2, 10, 11, 9, 13℄.The applied pi
al
ulus has many
ommonalities with theoriginal pi
al
ulus and its relatives, su
h as the spi
al
ulus(dis
ussed above). In parti
ular, the model of
ommuni
a-tion adopted in the applied pi
al
ulus is deliberately
las-si
al:
ommuni
ation is through named
hannels, and value
omputation is rather separate from
ommuni
ation. Fur-

www.manaraa.com

ther, a
tive substitutions are reminis
ent of the
onstraintsof the fusion
al
ulus [43℄. They are espe
ially
lose to thesubstitution environments that Boreale et al. employ in theirproof te
hniques for a variant of the spi
al
ulus with a sym-metri

ryptosystem [12℄; we in
orporate substitutions intopro
esses, systematize them, and generalize from symmetri

ryptosystems to arbitrary operations and equations.Famously, the pi
al
ulus is the language of those livelyso
ial o

asions where all
onversations are ex
hanges ofnames. The applied pi
al
ulus opens the possibility of moresubstantial, stru
tured
onversations; the
rypti

hara
terof some of these
onversations
an only add to their
harmand to their tedium.A
knowledgements We thank Ro

o De Ni
ola, AndyGordon, Tony Hoare, and Phil Rogaway for dis
ussions that
ontributed to this work. Georges Gonthier and Jan J�urjenssuggested improvements in its presentation.Referen
es[1℄ Mart��n Abadi. Prote
tion in programming-languagetranslations. In Kim G. Larsen, Sven Skyum, andGlynn Winskel, editors, Pro
eedings of the 25th Inter-national Colloquium on Automata, Languages and Pro-gramming, volume 1443 of Le
ture Notes in ComputerS
ien
e, pages 868{883. Springer, July 1998. Also Dig-ital Equipment Corporation Systems Resear
h Centerreport No. 154, April 1998.[2℄ Mart��n Abadi. Se
re
y by typing in se
urity proto
ols.Journal of the ACM, 46(5):749{786, September 1999.[3℄ Mart��n Abadi, C�edri
 Fournet, and Georges Gonthier.Se
ure implementation of
hannel abstra
tions. In Pro-
eedings of the Thirteenth Annual IEEE Symposium onLogi
 in Computer S
ien
e, pages 105{116, June 1998.[4℄ Mart��n Abadi, C�edri
 Fournet, and Georges Gonthier.Authenti
ation primitives and their
ompilation. InPro
eedings of the 27th ACM Symposium on Prin
i-ples of Programming Languages, pages 302{315, Jan-uary 2000.[5℄ Mart��n Abadi and Andrew D. Gordon. A
al
ulus for
ryptographi
 proto
ols: The spi
al
ulus. Informa-tion and Computation, 148(1):1{70, January 1999. Anextended version appeared as Digital Equipment Cor-poration Systems Resear
h Center report No. 149, Jan-uary 1998.[6℄ Mart��n Abadi and Phillip Rogaway. Re
on
iling twoviews of
ryptography (The
omputational soundnessof formal en
ryption). In Pro
eedings of the First IFIPInternational Conferen
e on Theoreti
al Computer S
i-en
e, volume 1872 of Le
ture Notes in Computer S
i-en
e, pages 3{22. Springer-Verlag, August 2000.[7℄ Roberto M. Amadio and Denis Lugiez. On the rea
h-ability problem in
ryptographi
 proto
ols. In Catus-
ia Palamidessi, editor, CONCUR 2000: Con
urren
yTheory (11th International Conferen
e), volume 1877of Le
ture Notes in Computer S
ien
e, pages 380{394.Springer-Verlag, August 2000.

[8℄ Mihir Bellare and Phillip Rogaway. Entity authenti
a-tion and key distribution. In Advan
es in Cryptology|CRYPTO '94, volume 773 of Le
ture Notes in Com-puter S
ien
e, pages 232{249. Springer-Verlag, 1993.[9℄ Chiara Bodei. Se
urity Issues in Pro
ess Cal
uli. PhDthesis, Universit�a di Pisa, January 2000.[10℄ Chiara Bodei, Pierpaolo Degano, Flemming Nielson,and Hanne Riis Nielson. Control
ow analysis for thepi-
al
ulus. In Davide Sangiorgi and Robert de Simone,editors, CONCUR '98: Con
urren
y Theory (9th Inter-national Conferen
e), volume 1466 of Le
ture Notes inComputer S
ien
e, pages 84{98. Springer, September1998.[11℄ Chiara Bodei, Pierpaolo Degano, Flemming Nielson,and Hanne Riis Nielson. Stati
 analysis of pro
esses forno read-up and no write-down. In Wolfgang Thomas,editor, Pro
eedings of the Se
ond International Confer-en
e on Foundations of Software S
ien
e and Computa-tion Stru
tures (FoSSaCS '99), volume 1578 of Le
tureNotes in Computer S
ien
e, pages 120{134. Springer,1999.[12℄ Mi
hele Boreale, Ro

o De Ni
ola, and RosarioPugliese. Proof te
hniques for
ryptographi
 pro
esses.In Pro
eedings of the Fourteenth Annual IEEE Sym-posium on Logi
 in Computer S
ien
e, pages 157{166,July 1999.[13℄ Lu
a Cardelli. Mobility and se
urity. In F. L. Bauerand R. Steinbrueggen, editors, Foundations of Se
ureComputation, NATO S
ien
e Series, pages 3{37. IOSPress, 2000.[14℄ Sylvain Con
hon and Fabri
e Le Fessant. Jo
aml:Mobile agents for Obje
tive-Caml. In First Interna-tional Symposium on Agent Systems and Appli
ations(ASA'99)/Third International Symposium on MobileAgents (MA'99), pages 22{29, O
tober 1999.[15℄ Core SDI S.A. ssh insertion atta
k. Availableat http://www.
ore-sdi.
om/soft/ssh/atta
k.txt,July 1998.[16℄ Mads Dam. Proving trust in systems of se
ond-orderpro
esses. In Pro
eedings of the 31th Hawaii Inter-national Conferen
e on System S
ien
es, volume VII,pages 255{264, 1998.[17℄ W. DiÆe and M. Hellman. New dire
tions in
ryp-tography. IEEE Transa
tions on Information Theory,IT-22(6):644{654, November 1976.[18℄ Whit�eld DiÆe, Paul C. van Oors
hot, and Mi
hael J.Wiener. Authenti
ation and authenti
ated key ex-
hanges. Designs, Codes and Cryptography, 2:107{125,1992.[19℄ Danny Dolev and Andrew C. Yao. On the se
urity ofpubli
 key proto
ols. IEEE Transa
tions on Informa-tion Theory, IT-29(12):198{208, Mar
h 1983.[20℄ C�edri
 Fournet and Georges Gonthier. A hierar
hyof equivalen
es for asyn
hronous
al
uli. In Kim G.Larsen, Sven Skyum, and Glynn Winskel, editors, Pro-
eedings of the 25th International Colloquium on Au-tomata, Languages and Programming, volume 1443 of

www.manaraa.com

Le
ture Notes in Computer S
ien
e, pages 844{855.Springer, July 1998.[21℄ Alan O. Freier, Philip Karlton, and Paul C. Ko
her.The SSL proto
ol: Version 3.0. Available at http://home.nets
ape.
om/eng/ssl3/draft302.txt, Novem-ber 1996.[22℄ Sha� Goldwasser and Mihir Bellare. Le
ture noteson
ryptography. Summer Course \Cryptography andComputer Se
urity" at MIT, 1996{1999, August 1999.[23℄ Sha� Goldwasser and Silvio Mi
ali. Probabilisti
 en-
ryption. Journal of Computer and System S
ien
es,28:270{299, April 1984.[24℄ Sha� Goldwasser, Silvio Mi
ali, and Ronald Rivest.A digital signature s
heme se
ure against adaptive
hosen-message atta
k. SIAM Journal on Computing,17:281{308, 1988.[25℄ R. Kemmerer, C. Meadows, and J. Millen. Three sys-tem for
ryptographi
 proto
ol analysis. Journal ofCryptology, 7(2):79{130, Spring 1994.[26℄ Hugo Kraw
zyk. SKEME: A versatile se
ure key ex-
hange me
hanism for internet. In Pro
eedings ofthe Internet So
iety Symposium on Network and Dis-tributed Systems Se
urity, February 1996. Available athttp://bilbo.isu.edu/sndss/sndss96.html.[27℄ Ben Liblit and Alexander Aiken. Type systems for dis-tributed data stru
tures. In Pro
eedings of the 27thACM Symposium on Prin
iples of Programming Lan-guages, pages 199{213, January 2000.[28℄ P. Lin
oln, J. Mit
hell, M. Mit
hell, and A. S
edrov.A probabilisti
 poly-time framework for proto
ol anal-ysis. In Pro
eedings of the Fifth ACM Conferen
e onComputer and Communi
ations Se
urity, pages 112{121, 1998.[29℄ Gavin Lowe. Breaking and �xing the Needham-S
hroeder publi
-key proto
ol using FDR. In Toolsand Algorithms for the Constru
tion and Analysis ofSystems, volume 1055 of Le
ture Notes in ComputerS
ien
e, pages 147{166. Springer Verlag, 1996.[30℄ Alfred J. Menezes, Paul C. van Oors
hot, and S
ott A.Vanstone. Handbook of Applied Cryptography. CRCPress, 1996.[31℄ Robin Milner. Communi
ation and Con
urren
y. In-ternational Series in Computer S
ien
e. Prenti
e Hall,1989.[32℄ Robin Milner. Communi
ating and Mobile Systems: the�-Cal
ulus. Cambridge University Press, 1999.[33℄ John C. Mit
hell. Foundations for Programming Lan-guages. MIT Press, 1996.[34℄ John C. Mit
hell, Mark Mit
hell, and Ulri
h Stern.Automated analysis of
ryptographi
 proto
ols usingMur�. In Pro
eedings of the 1997 IEEE Symposium onSe
urity and Priva
y, pages 141{151, 1997.[35℄ Lawren
e C. Paulson. The indu
tive approa
h to ver-ifying
ryptographi
 proto
ols. Journal of ComputerSe
urity, 6(1{2):85{128, 1998.

[36℄ Birgit P�tzmann, Matthias S
hunter, and Mi
haelWaidner. Cryptographi
 se
urity of rea
tive systems(extended abstra
t). Ele
troni
 Notes in Theoreti
alComputer S
ien
e, 32, April 2000.[37℄ Benjamin C. Pier
e and David N. Turner. Pi
t: A pro-gramming language based on the pi-
al
ulus. In GordonPlotkin, Colin Stirling, and Mads Tofte, editors, Proof,Language and Intera
tion: Essays in Honour of RobinMilner, Foundations of Computing. MIT Press, May2000.[38℄ D. Sangiorgi. On the bisimulation proof method. Jour-nal of Mathemati
al Stru
tures in Computer S
ien
e,8:447{479, 1998.[39℄ Steve S
hneider. Se
urity properties and CSP. In Pro-
eedings of the 1996 IEEE Symposium on Se
urity andPriva
y, pages 174{187, 1996.[40℄ Bru
e S
hneier. Applied Cryptography: Proto
ols, Al-gorithms, and Sour
e Code in C. John Wiley & Sons,In
., se
ond edition, 1996.[41℄ Stuart G. Stubblebine and Virgil D. Gligor. On messageintegrity in
ryptographi
 proto
ols. In Pro
eedings ofthe 1992 IEEE Symposium on Resear
h in Se
urity andPriva
y, pages 85{104, 1992.[42℄ F. Javier Thayer F�abrega, Jonathan C. Herzog, andJoshua D. Guttman. Strand spa
es: Why is a se
urityproto
ol
orre
t? In Pro
eedings of the 1998 IEEESymposium on Se
urity and Priva
y, pages 160{171,May 1998.[43℄ Bj�orn Vi
tor. The Fusion Cal
ulus: Expressiveness andSymmetry in Mobile Pro
esses. PhD thesis, Dept. ofComputer Systems, Uppsala University, Sweden, June1998.[44℄ Andrew C. Yao. Theory and appli
ations of trapdoorfun
tions. In Pro
eedings of the 23rd Annual Sympo-sium on Foundations of Computer S
ien
e (FOCS 82),pages 80{91, 1982.

